All About 2018 -- E

Algebra Level 3

x + 2 x + 2 x + . . . + 2 x + 2 3 x Number of x = 2018 = x \underbrace{\sqrt{x+2\sqrt{x+2\sqrt{x+...+2\sqrt{x+2\sqrt{3x}}}}}}_\text{Number of x = 2018}=x

Find the sum of all the real roots of the equation above.


Try also


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X X
Jun 7, 2018

Let 3 x = x \sqrt{3x}=x .

Then x = x + 2 x + 2 x + . . . + 2 x + 2 3 x x=\sqrt{x+2\sqrt{x+2\sqrt{x+...+2\sqrt{x+2\sqrt{3x}}}}}

= x + 2 x + 2 x + . . . + 2 x + 2 x =\sqrt{x+2\sqrt{x+2\sqrt{x+...+2\sqrt{x+2x}}}}

= x + 2 x + 2 x + . . . + 2 x = . . . = 3 x =\sqrt{x+2\sqrt{x+2\sqrt{x+...+2x}}}=...=\sqrt{3x}

It fits! So x = 3 x=3

How does this justify that no other solution exists?

typical beam - 2 years, 9 months ago

If x<3 then, x+ 2 root 3x > x + 2 root x^2 = 3x > x^2

so x+ 2 root { x+ 2 root 3x } > x +2 root { x^2 } = 3x > x^2

as same way,

x+ 2 root { x+ 2 root { ... + 2 root { x+ 2 root 3x } } } > x^2

so x > x : contradiction

As same way : If x >3 : contradiction

So 3 is unique solution

Dong kwan Yoo - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...