All about Complex Conjugate

Algebra Level pending

If complex numbers α \alpha and β \beta satisfy α + β = 7 i 98 + 9 i 99 + 7 i 100 , \alpha+\overline{\beta} = 7 i^{98}+9 i^{99} + 7 i^{100}, what is the value of α α + α β + α β + β β ? \alpha \overline{\alpha} + \alpha\beta + \overline{\alpha\beta} + \beta \overline{\beta}?

72 72 63 63 49 49 81 81

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Nov 7, 2020

Let α = p + q i , β = r + s i \alpha = p+qi, \beta = r+si such that α + β ˉ = ( p + q i ) + ( r s i ) = 7 9 i + 7 = 9 i \alpha + \bar{\beta} = (p+qi)+(r-si) = -7 -9i+7 = -9i , or

p + r = 0 p+r=0 (i),

q s = 9 q-s=-9 (ii).

Expanding out α α ˉ + α β + α ˉ β ˉ + β β ˉ \alpha\bar{\alpha} + \alpha\beta +\bar{\alpha}\bar{\beta} + \beta\bar{\beta} now yields:

α α ˉ + α β + α ˉ β ˉ + β β ˉ = ( p + q i ) ( p q i ) + ( r + s i ) ( r s i ) + ( p + q i ) ( r + s i ) + ( p q i ) ( r s i ) \alpha\bar{\alpha} + \alpha\beta +\bar{\alpha}\bar{\beta} + \beta\bar{\beta} = (p+qi)(p-qi)+(r+si)(r-si)+(p+qi)(r+si)+(p-qi)(r-si) ;

or p 2 + q 2 + r 2 + s 2 + 2 p r 2 q s + ( p s + q r ) i ( p s + q r ) i ; p^2 + q^2 +r^2 + s^2 + 2pr - 2qs + (ps+qr)i - (ps+qr)i;

or p 2 + q 2 + r 2 + s 2 + 2 p r 2 q s p^2 + q^2 +r^2 + s^2 + 2pr - 2qs ;

or ( p + r ) 2 + ( q s ) 2 (p+r)^2 + (q-s)^2 ;

or 0 2 + ( 9 ) 2 = 81 . 0^2 + (-9)^2 = \boxed{81}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...