All about that Base!

Find the sum of the last 3 digits of 7 999 7^{999} .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

7 999 7 999 mod ϕ ( 1000 ) (mod 1000) Since gcd ( 7 , 1000 ) = 1 , Euler’s theorem applies 7 999 mod 400 (mod 1000) Euler’s totient function ϕ ( 1000 ) = 400 7 199 (mod 1000) 7 199 (mod 1000) 7 4 × 49 + 3 (mod 1000) Note that 7 4 = 2401 , 7 3 = 343 240 1 49 343 (mod 1000) 40 1 49 343 (mod 1000) ( 400 + 1 ) 5 × 9 + 4 343 (mod 1000) Note that ( 400 + 1 ) 5 1 (mod 1000) ( 400 + 1 ) 4 343 (mod 1000) Note that ( 400 + 1 ) 4 601 (mod 1000) 601 343 (mod 1000) = 143 (mod 1000) \begin{aligned} 7^{999} & \equiv 7^{\color{#3D99F6}{999 \text{ mod } \phi(1000)}} \text{ (mod 1000)} & \small \color{#3D99F6}{\text{Since }\gcd (7,1000) = 1 \text{, Euler's theorem applies}} \\ & \equiv 7^{\color{#3D99F6}{999 \text{ mod } 400}} \text{ (mod 1000)} & \small \color{#3D99F6}{\text{Euler's totient function }\phi (1000) = 400} \\ & \equiv 7^{199} \text{ (mod 1000)} \\ & \equiv 7^{199} \text{ (mod 1000)} \\ & \equiv 7^{4\times 49+3} \text{ (mod 1000)} & \small \color{#3D99F6}{\text{Note that } 7^4 = 2401, \ 7^3 = 343} \\ & \equiv 2401^{49} \cdot 343 \text{ (mod 1000)} \\ & \equiv 401^{49} \cdot 343 \text{ (mod 1000)} \\ & \equiv (400+1)^{5\times 9 +4} \cdot 343 \text{ (mod 1000)} & \small \color{#3D99F6}{\text{Note that } (400+1)^5 \equiv 1 \text{ (mod 1000)}} \\ & \equiv (400+1)^4 \cdot 343 \text{ (mod 1000)} & \small \color{#3D99F6}{\text{Note that } (400+1)^4 \equiv 601 \text{ (mod 1000)}} \\ & \equiv 601 \cdot 343 \text{ (mod 1000)} \\ & = \boxed{143} \text{ (mod 1000)} \end{aligned}

Achal Jain
Aug 6, 2016

7 4 n ( 1 + 400 n ) n 1 + 400 n ( m o d 1000 ) { 7 }^{ 4n }\equiv { (1+400n) }^{ n }\equiv 1+400n\quad (mod\quad 1000) .

You are of which class.

Kanta Sharma - 4 years, 6 months ago

Log in to reply

10th class

Achal Jain - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...