Pyramids!

Geometry Level pending

Extend the above diagram to a pyramid whose base is a regular n n - gon.

Let O O be the center of the regular n n - gon and construct a circle centered at O O whose circumference is equal to the perimeter of the n n - gon. Folding the arc of the semi-circle at a right angle, as shown above, the radius of the semicircle becomes the height of the n n -gonal pyramid.

Let θ n \theta_{n} be the obtuse angle made between two adjacent faces .

(1) Find cos ( θ n ) \cos(\theta_{n}) .

(2) Using n = 13 n = 13 find the obtuse angle(in degrees) made between two adjacent faces.


The answer is 160.321643935123.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 1, 2021

Let each radii of the regular n n -gon be a a and A ( 0 , 0 , 0 ) , B ( a cos ( 2 π n ) , a sin ( 2 π n ) , 0 ) , C ( a cos ( 2 π n ) , a sin ( 2 π n ) , 0 ) A(0,0,0), B(a\cos(\dfrac{2\pi}{n}), -a\sin(\dfrac{2\pi}{n}),0), C(a\cos(\dfrac{2\pi}{n}), a\sin(\dfrac{2\pi}{n}),0) and P ( 0 , 0 , r ) P(0,0,r) .

A B = 2 a sin 2 ( π n ) i a sin ( 2 π n ) j + 0 k \vec{AB} = -2a\sin^2(\dfrac{\pi}{n})\vec{i} - a\sin(\dfrac{2\pi}{n})\vec{j} + 0\vec{k}

A C = 2 a sin 2 ( π n ) i + a sin ( 2 π n ) j + 0 k \vec{AC} = -2a\sin^2(\dfrac{\pi}{n})\vec{i} + a\sin(\dfrac{2\pi}{n})\vec{j} + 0\vec{k}

A P = a i + 0 j + r k \vec{AP} = -a\vec{i} + 0\vec{j} + r\vec{k}

u = A P X A C = a r sin ( 2 π n ) i 2 a r sin 2 ( π n ) j a 2 sin ( 2 π n ) k \implies \vec{u} = \vec{AP} X \vec{AC} = -ar\sin(\dfrac{2\pi}{n})\vec{i} - 2ar\sin^2(\dfrac{\pi}{n})\vec{j} - a^2\sin(\dfrac{2\pi}{n})\vec{k}

and

v = A P X A C = a r sin ( 2 π n ) i 2 a r sin 2 ( π n ) j + a 2 sin ( 2 π n ) k \vec{v} = \vec{AP} X \vec{AC} = ar\sin(\dfrac{2\pi}{n})\vec{i} - 2ar\sin^2(\dfrac{\pi}{n})\vec{j} + a^2\sin(\dfrac{2\pi}{n})\vec{k}

u v = 4 a 2 sin 2 ( π n ) ( ( 2 r 2 + a 2 ) sin 2 ( π n ) ( r 2 + a 2 ) ) \implies \vec{u} \cdot \vec{v} = 4a^2\sin^2(\dfrac{\pi}{n})((2r^2 + a^2)\sin^2(\dfrac{\pi}{n}) - (r^2 + a^2))

and

u 2 = v 2 = 4 a 2 sin 2 ( π n ) ( ( r 2 + a 2 ) a 2 sin 2 ( π n ) ) |\vec{u}|^2 = |\vec{v}|^2 = 4a^2\sin^2(\dfrac{\pi}{n})((r^2 + a^2) - a^2\sin^2(\dfrac{\pi}{n}))

cos ( θ n ) = u v u 2 = \implies \cos(\theta_{n}) = \dfrac{\vec{u} \cdot \vec{v}}{|\vec{u}|^2} = ( 2 r 2 + a 2 ) sin 2 ( π n ) ( r 2 + a 2 ) ( r 2 + a 2 ) a 2 sin 2 ( π n ) \dfrac{(2r^2 + a^2)\sin^2(\dfrac{\pi}{n}) - (r^2 + a^2)}{(r^2 + a^2) - a^2\sin^2(\dfrac{\pi}{n})}

Let a a^{*} be length of each side of the n n -gon a = 2 a sin ( π n ) \implies a^{*} = 2a\sin(\dfrac{\pi}{n})

and n a = 2 π r r = n a 2 π = a n sin ( π n ) π na^{*} = 2\pi r \implies r = \dfrac{na^{*}}{2\pi} = \dfrac{an\sin(\dfrac{\pi}{n})}{\pi} \implies

cos ( θ n ) = ( sin 2 ( π n ) ) ( 2 n 2 sin 2 ( π n ) + π 2 n 2 ) π 2 ( n 2 π 2 ) sin 2 ( π n ) + π 2 \cos(\theta_{n}) = \dfrac{(\sin^2(\dfrac{\pi}{n}))(2n^2\sin^2(\dfrac{\pi}{n}) + \pi^2 - n^2) - \pi^2}{(n^2 - \pi^2)\sin^2(\dfrac{\pi}{n}) + \pi^2}

cos ( θ 13 ) 0.9415978180419575 θ 13 160.32164393512 3 \implies \cos(\theta_{13}) \approx -0.9415978180419575 \implies \theta_{13} \approx \boxed{160.321643935123^{\circ}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...