All are Integers

{ a 2 = b c + 4 b 2 = c a + 4 \large \begin{cases} a^2 = bc + 4 \\ b^2 = ca + 4 \end{cases}

Find the number of ordered triplets of integers ( a , b , c ) (a,b,c) , which satisfy the system of equations above..

This question belongs to the set Number theory best problems


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

We can take two cases:

Case 1: When a = b a=b .

Then we get the equation a 2 = a c + 4 a^2=ac+4

a ( a c ) = 4 \Longrightarrow a(a-c)=4

It makes

a = 1 , a c = 4 \Rightarrow a=1, a-c=4

a = 1 , a c = 4 \Rightarrow a=-1, a-c=-4

a = 4 , a c = 1 \Rightarrow a=4, a-c=1

a = 4 , a c = 1 \Rightarrow a=-4, a-c=-1

a = 2 , a c = 2 \Rightarrow a=2, a-c=2

a = 2 , a c = 2 \Rightarrow a=-2, a-c=-2

Thus we get ( a , b , c ) = ( 1 , 1 , 3 ) , ( 1 , 1 , 3 ) , ( 4 , 4 , 3 ) , ( 4 , 4 , 3 ) ; ( 2 , 2 , 0 ) , ( 2 , 2 , 0 ) . (a, b, c) = (1, 1, -3),(-1, -1, 3), (4, 4, 3), (-4, -4, -3); (2, 2, 0), (-2, -2, 0).

Case 2:When a b a\neq b

Subtracting the first relation from the second we get

a 2 b 2 = c ( b a ) . \Rightarrow a^2 - b^2 = c(b - a).

This gives a + b = c a+b=-c

Substituting this in the first equation, we get

a 2 = b ( a b ) + 4. \Rightarrow a^2 = b(-a - b) + 4.

Thus a 2 + b 2 + a b = 4 a^2 + b^2 + ab = 4

Multiplication by 2 gives ( a + b ) 2 + a 2 + b 2 = 8 (a + b)^2 + a^2 + b^2 = 8

Thus ( a , b ) = ( 2 , 2 ) , ( 2 , 2 ) , ( 2 , 0 ) , ( 2 , 0 ) , ( 0 , 2 ) , ( 0 , 2 ) . (a, b) = (2, -2), (-2, 2), (2, 0), (-2, 0), (0, 2), (0, -2).

We get respectively c = 0 , 0 , 2 , 2 , 2 , 2. c =0, 0, -2, 2, -2, 2.

Thus from both the cases we get 6 6 triples each.

So the answer is 12 \boxed{12}

Chew-Seong Cheong
Jan 21, 2018

{ a 2 = b c + 4 . . . ( 1 ) b 2 = c a + 4 . . . ( 2 ) ( 1 ) ( 2 ) : a 2 b 2 = c ( b a ) ( a b ) ( a + b ) = c ( a b ) \begin{cases} a^2 = bc + 4 & ...(1) \\ b^2 = ca + 4 & ...(2) \end{cases} \implies (1)-(2): \ a^2 - b^2 = c(b-a) \implies (a-b)(a+b) = -c(a-b)

Case 1: If a b 0 a-b \ne 0 or a b a \ne b , then ( a b ) ( a + b ) = c ( a b ) c = ( a + b ) (a-b)(a+b) = -c(a-b) \implies c = -(a+b) . Substituting in ( 1 ) (1) .

a 2 = b ( a + b ) + 4 b 2 + a b + a 2 4 = 0 It is a quadratic equation of b . b = a ± 16 3 a 2 2 \begin{aligned} a^2 & = -b(a+b) + 4 \\ b^2 + ab + a^2 - 4 & = 0 & \small \color{#3D99F6} \text{It is a quadratic equation of }b. \\ \implies b & = \frac {-a \pm \sqrt{16-3a^2}}2 \end{aligned}

We note that b b is integral only when 16 3 a 2 16-3a^2 is a perfect square and a < 3 |a| < 3 . The acceptable integral solutions are:

{ a = 2 { b = 2 c = 0 ( 2 , 2 , 0 ) b = 0 c = 2 ( 2 , 0 , 2 ) a = 0 { b = 2 c = 2 ( 0 , 2 , 2 ) b = 2 c = 2 ( 0 , 2 , 2 ) a = 2 { b = 0 c = 2 ( 2 , 0 , 2 ) b = 2 c = 0 ( 2 , 2 , 0 ) \begin{cases} a = - 2 & \implies \begin{cases} b = 2 & \implies c = 0 & \implies (-2, 2, 0) \\ b = 0 & \implies c = 2 & \implies (-2, 0, 2) \end{cases} \\ a = 0 & \implies \begin{cases} b = 2 & \implies c = -2 & \implies (0, 2, -2) \\ b = -2 & \implies c = 2 & \implies (0, -2, 2) \end{cases} \\ a = 2 & \implies \begin{cases} b = 0 & \implies c = -2 & \implies (2, 0,-2) \\ b = -2 & \implies c = 0 & \implies (2, -2, 0) \end{cases} \end{cases}

Case 2: If a b = 0 a-b = 0 or a = b a = b , then ( 1 ) = ( 2 ) = a 2 = c a + 4 (1) = (2) = a^2 = ca + 4 , then

a 2 = c a + 4 a 2 c a 4 = 0 It is a quadratic equation of a . a = c ± c 2 + 16 2 \begin{aligned} a^2 & = ca + 4 \\ a^2 - ca - 4 & = 0 & \small \color{#3D99F6} \text{It is a quadratic equation of }a. \\ \implies a & = \frac {c \pm \sqrt{c^2+16}}2 \end{aligned}

Again a a is integral only when c 2 + 16 c^2+16 is a perfect square and from Pythagorean triples, there is no perfect square for c > 3 |c| >3 . The acceptable integral solutions are:

{ c = 3 { a = b = 1 ( 1 , 1 , 3 ) a = b = 4 ( 4 , 4 , 3 ) c = 0 { a = b = 2 ( 2 , 2 , 0 ) a = b = 2 ( 2 , 2 , 0 ) c = 3 { a = b = 4 ( 4 , 4 , 3 ) a = b = 1 ( 1 , 1 , 3 ) \begin{cases} c = -3 & \implies \begin{cases} a = b = 1 & \implies (1,1,-3) \\ a = b = - 4 & \implies (-4,-4,-3) \end{cases} \\ c = 0 & \implies \begin{cases} a = b = 2 & \implies (2,2,0) \\ a = b = - 2 & \implies (-2,-2,0) \end{cases} \\ c = 3 & \implies \begin{cases} a = b = 4 & \implies (4,4,3) \\ a = b = 1 & \implies (-1,-1,3) \end{cases} \end{cases}

Therefore, there are 12 \boxed{12} ordered integer triplets ( a , b , c ) (a,b,c) satisfying the system of equations.

Leonel Castillo
Jan 13, 2018

Subtract the second equation from the first one to get a 2 b 2 = b c c a a^2 - b^2 = bc - ca and therefore ( a + b ) ( a b ) = c ( b a ) (a+b)(a-b) = c(b-a) . This naturally leads us to first consider the case a b a \neq b so that we may simplify this last equation to a + b = c a+b = -c . Substituting this into the original equations we get (in both cases) b 2 = a 2 a b + 4 b^2 = -a^2 - ab + 4 . I will write this as a 2 + a b + ( b 2 4 ) = 0 a^2 + ab + (b^2 - 4) = 0 and consider this to be a quadratic polynomial with variable a a . Computing the discriminant we get 16 3 b 2 16 - 3b^2 and we can immediately get a range of values for b b given that for a a to be real, this discriminant needs to be non-negative so b b can only take values from { 2 , 1 , 0 , 1 , 2 } \{-2,-1,0,1,-2 \} . Finally, given that for a a to be an integer this discriminant has to be a perfect square we can, via checking, figure out that actually b b can only take values from { 2 , 0 , 2 } \{-2,0,2 \} . This means we have to solve 3 polynomial equations, but these turn out to be relatively simple:

a 2 2 a = 0 a ( a 2 ) = 0 a^2 - 2a = 0 \implies a(a-2) = 0 \implies 2 solutions. a 2 4 = 0 a 2 = 4 a^2 - 4 = 0 \implies a^2 = 4 \implies 2 solutions. a 2 + 2 a = 0 a ( a + 2 ) = 0 a^2 + 2a = 0 \implies a(a+2) = 0 \implies 2 solutions.

So we obtained 6 solutions in total. But these solutions occur under the assumption that a b a \neq b so to be careful one should also check what happens if a = b a=b . If that is the case we get a 2 = a c + 4 a = c + 4 a c = a 4 a a^2 = ac + 4 \implies a = c + \frac{4}{a} \implies c = a - \frac{4}{a} . If we now consider c c to be a function of a a it is clear that for c c to be an integer, a a must be a divisor of 4, of which there are 6 over the integers ( 4 , 2 , 1 , 1 , 2 , 4 -4,-2,-1,1,2,4 ) so we obtain a new set of 6 solutions. Adding up to 12 solutions.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...