All boils down to one

3 2 + 4 2 = 5 2 5 2 + 1 2 2 = 1 3 2 6 2 + 8 2 = 1 0 2 7 2 + 2 4 2 = 2 5 2 \begin{array}{c}\\ 3^2+4^2 &=& 5^2 \\ 5^2+12^2 &=& 13^2 \\ 6^2+8^2 &=& 10^2 \\7^2 + 24^2 &=& 25^2 \\ \end{array}

A Pythagoras Triplet ( A , B , C ) (A,B,C) satisfy the condition that A , B , C A,B,C are positive integers such that A 2 + B 2 = C 2 A^2 + B^2 = C^2 . From above, we can see that ( 3 , 4 , 5 ) , ( 5 , 12 , 13 ) , ( 6 , 8 , 10 ) , ( 7 , 24 , 25 ) (3,4,5), (5,12,13), (6,8,10),(7,24,25) are all Pythagoras Triplets.

Note that equations above are equivalent to

( 2 2 1 2 ) 2 + ( 2 2 1 ) 2 = ( 2 2 + 1 2 ) 2 ( 3 2 2 2 ) 2 + ( 2 3 2 ) 2 = ( 3 2 + 2 2 ) 2 ( 3 2 1 2 ) 2 + ( 2 3 1 ) 2 = ( 3 2 + 1 2 ) 2 ( 4 2 3 2 ) 2 + ( 2 4 3 ) 2 = ( 4 2 + 3 2 ) 2 \begin{array}{c}\\ (\color{#3D99F6}2^2 - \color{#20A900}1^2)^2 + (2 \cdot \color{#3D99F6}2 \cdot \color{#20A900}1)^2 & = & (\color{#3D99F6}2^2 + \color{#20A900}1^2)^2 \\ (\color{#3D99F6}3^2 - \color{#20A900}2^2)^2 + (2 \cdot \color{#3D99F6}3 \cdot \color{#20A900}2)^2 & = & (\color{#3D99F6}3^2 + \color{#20A900}2^2)^2 \\ (\color{#3D99F6}3^2 - \color{#20A900}1^2)^2 + (2 \cdot \color{#3D99F6}3 \cdot \color{#20A900}1)^2 & = & (\color{#3D99F6}3^2 + \color{#20A900}1^2)^2 \\ (\color{#3D99F6}4^2 - \color{#20A900}3^2)^2 + (2 \cdot \color{#3D99F6}4 \cdot \color{#20A900}3)^2 & = & (\color{#3D99F6}4^2 + \color{#20A900}3^2)^2 \\ \end{array}

True or false? :

"All Pythagoras Triplets ( A , B , C ) (A,B,C) can be written as ( m 2 n 2 , 2 m n , m 2 + n 2 ) (m^2 - n^2, 2mn, m^2 + n^2 ) for positive integers m , n m,n with m > n m>n ."

Note that the values of A A and B B are interexchangeable, so the triplet ( 3 , 4 , 5 ) (3,4,5) is equivalent to ( 4 , 3 , 5 ) (4,3,5) .

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

0 solutions

No explanations have been posted yet. Check back later!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...