All causes and sin are from the same root

Calculus Level 5

0 sin ( x ) + cos ( x ) x d x \large \int_0^\infty \frac{ \sin(x) + \cos(x) }{\sqrt x} \, dx

If the integral above is equal to ( A × π ) B (A \times \pi)^B for rational numbers A A and B B , find the value of A ÷ B A \div B .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Nov 15, 2015

Nice problem!!

x = t \sqrt{x}=t

2 0 sin ( t 2 ) + cos ( t 2 ) d t \large{2 \displaystyle \int _{0}^{\infty} \sin (t^2)+\cos (t^2) dt}

We know that

0 e a x x n 1 d x = Γ ( n ) a n \large{\displaystyle \int _{0}^{\infty} e^{-ax}x^{n-1} dx=\frac{\Gamma (n)}{a^{n}}} where Γ ( n ) \Gamma (n) is Gamma function

Replace a a + i b a \rightarrow a+ib where i = 1 i =\sqrt{-1}

0 e a x e i b x x n 1 d x = Γ ( n ) ( a + i b ) n \large{\displaystyle \int _{0}^{\infty} e^{-ax}e^{-ibx}x^{n-1} dx=\frac{\Gamma (n)}{(a+ib)^{n}}}

Put a = r cos y a n d b = r sin y a=r \cos y ~ and ~ b=r \sin y .

So that r 2 = a 2 + b 2 r^2=a^2+b^2 and y = arctan ( b a ) y=\arctan \left(\frac{b}{a}\right)

Using de moviers theorem

0 e a x ( cos b x i sin b x ) x n 1 d x = Γ ( n ) r n ( cos n y + sin n y ) 1 \large{\displaystyle \int _{0}^{\infty} e^{-ax}(\cos bx-i \sin bx)x^{n-1} dx=\frac{\Gamma (n)}{r^{n}}(\cos ny+\sin ny)^{-1}}

Comparing the real and imaginary parts we finally get

0 e a x ( cos b x ) x n 1 d x = Γ ( n ) r n ( cos n y ) \large{\displaystyle \int _{0}^{\infty} e^{-ax}(\cos bx)x^{n-1} dx=\frac{\Gamma (n)}{r^{n}}(\cos ny)}

0 e a x ( sin b x ) x n 1 d x = Γ ( n ) r n ( sin n y ) \large{\displaystyle \int _{0}^{\infty} e^{-ax}(\sin bx)x^{n-1} dx=\frac{\Gamma (n)}{r^{n}}(\sin ny)}

I will give the answer for c o s cos part only as the sin \sin part is exactly analogous to it.

Put a = 0 a=0

0 e 0 x ( cos b x ) x n 1 d x = Γ ( n ) ( 0 2 + b 2 ) n 2 ( cos ( n arctan ( b 0 ) ) ) \large{\displaystyle \int _{0}^{\infty} e^{-0x}(\cos bx)x^{n-1} dx=\frac{\Gamma (n)}{(0^2+b^2)^{\frac{n}{2}}}(\cos \left(n \arctan \left(\frac{b}{0} \right)\right))}

0 x n 1 cos b x d x = Γ ( n ) b n cos ( n π 2 ) \large{\displaystyle \int _{0}^{\infty} x^{n-1} \cos bxdx=\frac{\Gamma (n)}{b^n} \cos \left(\frac{n \pi}{2}\right)}

Put x n = z x^n=z so that x n 1 d x = d z n x^{n-1}dx=\frac{dz}{n} and x = z 1 n \large{x=z^{\frac{1}{n}}}

Then

0 cos ( b z 1 n ) d z = n Γ ( n ) b n cos ( n π 2 ) \large{\displaystyle \int_{0}^{\infty} \cos(b z^{\frac{1}{n}}) dz=\frac{n \Gamma (n)}{b^n} \cos \left(\frac{n \pi}{2}\right)}

Here b = 1 b=1 and n = 1 2 n=\frac{1}{2}

0 cos ( x 2 ) = π 2 2 \large{\displaystyle \int_{0}^{\infty} \cos (x^2)=\frac{\sqrt{\pi}}{2 \sqrt{2}}}

The final answer is

2 π \huge{\boxed{\sqrt{2 \pi}}}

What method did u use @Rui-Xian Siew

Tanishq Varshney - 5 years, 7 months ago

Log in to reply

I used gamma functions too

Rui-Xian Siew - 5 years, 7 months ago

It's much simpler if you convert the sine in an exponential and then the integral becomes the gaussian one...this method doesn't give a general solution like yours but it's faster in this special case

Matteo De Zorzi - 5 years, 6 months ago

Simply use the RMT instead.

Kartik Sharma - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...