It's All Circles.

Geometry Level 3

The problem below is a slight alteration of a brilliant problem of the week.

Let j j be a positive real number.

Find the value of j j for which the radius r r of the circle is r = 85 6 r = \dfrac{85}{6} .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Sep 5, 2018

Let r = 85 6 r = \dfrac{85}{6} .

Using the points P P , Q Q , and R R on the circle above \implies

a 2 + b 2 = r 2 a^2 + b^2 = r^2

( j + 7 a ) 2 + ( j b ) 2 = r 2 (j + 7 - a)^2 + (j - b)^2 = r^2

a 2 + ( j + 4 + b ) 2 = r 2 a^2 + (j + 4 + b)^2 = r^2

Solving the system above we obtain:

( j + 4 ) 2 + 2 ( j + 4 ) b = 0 b = j + 4 2 3 j 2 + 18 j + 49 = 2 ( j + 7 ) a a = 3 j 2 + 18 j + 49 2 ( j + 7 ) \implies (j + 4)^2 + 2(j + 4)b = 0 \implies \boxed{b = -\dfrac{j + 4}{2}} \implies 3j^2 + 18j + 49 = 2(j + 7)a \implies \boxed{a = \dfrac{3j^2 + 18j + 49}{2(j + 7)}}

( 3 j 2 + 18 j + 49 2 ( j + 7 ) ) 2 + ( j + 4 2 ) 2 = ( 85 6 ) 2 10 j 4 + 130 j 3 + 795 j 2 + 2380 j + 3185 4 ( j 2 + 14 j + 49 ) = 7225 36 \implies (\dfrac{3j^2 + 18j + 49}{2(j + 7)})^2 + (\dfrac{j + 4}{2})^2 = (\dfrac{85}{6})^2 \implies\dfrac{10j^4 + 130j^3 + 795j^2 + 2380j + 3185}{4(j^2 + 14j + 49)} = \dfrac{7225}{36} \implies

360 j 4 + 4680 j 3 280 j 2 318920 j 1301440 = 0 360j^4 + 4680j^3 - 280j^2 - 318920j - 1301440 = 0

By inspection one solution is j = 8 j = 8 .

Dividing 360 j 4 + 4680 j 3 280 j 2 318920 j 1301440 360j^4 + 4680j^3 - 280j^2 - 318920j - 1301440 by j 8 j - 8 we obtain:

40 ( j 8 ) ( 9 j 3 + 189 j 2 + 1505 j + 4067 ) = 0 40(j - 8)(9j^3 + 189j^2 + 1505j + 4067) = 0 and 9 j 3 + 189 j 2 + 1505 j + 4067 > 0 9j^3 + 189j^2 + 1505j + 4067 > 0 for
j > 0 j = 8 j > 0 \implies j = \boxed{8} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...