All Red and Blue

Define the set S = { 1 , 2 , 3 , , N } S = \{1,2,3,\ldots , N \} consists of a consecutive integers from 1 to N N .

Let S 1 S_1 and S 2 S_2 be two subsets of S S such that

  • S 1 S 2 = { } S_1 \cap S_2 = \{ \} ,
  • S = S 1 S 2 S = S_1 \cup S_2 ,
  • If x 1 x_1 and x 2 x_2 are distinct elements in S 1 S_1 , then the value of x 1 + x 2 x_1+x_2 is not an element is S 1 S_1 , and
  • If x 1 x_1 and x 2 x_2 are distinct elements in S 2 S_2 , then the value of x 1 + x 2 x_1+x_2 is not an element is S 2 S_2 .

Find the largest possible value of N N .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mahdi Raza
Jun 23, 2020

Great Question!

We start by assorting the first three numbers 1 , 2 , 3 1, 2, 3 in Sets S 1 , S 2 S_{1}, S_{2} . We see that there are three ways to do it:

\[\begin{array} {c|c} S_{1} &1 \\ \hline S_{2} & 2 & 3 \end{array}

\quad \quad \quad

\begin{array} {c|c} S_{1} &2 \\ \hline S_{2} & 1 & 3 \end{array}

\quad \quad \quad

\begin{array} {c|c} S_{1} &3 \\ \hline S_{2} & 1 & 2 \end{array}\]

Arrangement 1:

The general strategy to follow is to rule out the sum of elements and place it in the other Set. To be specific, in S 2 S_{2} , the number 5 cannot be placed. Following this, we make the arrangements. At one particular instance, we will be able to observe that a number cannot be placed in any of the set and that will be a dead end.

\[\begin{array} {c|c} S_{1} &1 \\ \hline S_{2} & 2 & 3 \end{array}

\quad \implies \quad

\begin{array} {c|c} S_{1} &1 &\blue{5} \\ \hline S_{2} & \blue{2} & \blue{3} \end{array}

\quad \implies \quad

\begin{array} {c|c} S_{1} &\blue{1} &\blue{5} \\ \hline S_{2} & 2 & 3 &\blue{6} \end{array}

\quad \implies \quad

\begin{array} {c|c} S_{1} &\red{1} &\red{5} & \cancel{\red{4}} \\ \hline S_{2} & \red{2} & 3 &\red{6} & \cancel{\red{4}} \end{array} \]

Greatest number that we could place was 3 \boxed{\text{Greatest number that we could place was } 3}

Arrangement 2:

We follow the same thing done in Arrangement 1.

\[\begin{array} {c|c} S_{1} &2 \\ \hline S_{2} & 1 & 3 \end{array}

\quad \implies \quad

\begin{array} {c|c} S_{1} &2 & \blue{4} \\ \hline S_{2} & \blue{1} & \blue{3} \end{array}

\quad \implies \quad

\begin{array} {c|c} S_{1} & \blue{2} & \blue{4} \\ \hline S_{2} & 1 & 3& \blue{6} \end{array}

\quad \implies \quad

\begin{array} {c|c} S_{1} & 2 & 4 & \blue{5} \\ \hline S_{2} & \blue{1} & 3& \blue{6} \end{array}

\quad \implies \quad

\begin{array} {c|c} S_{1} & \red{2} & 4 & \red{5} & \cancel{\red{7}} \\ \hline S_{2} & \red{1} & 3& \red{6} & \cancel{\red{7}} \end{array}

\]

Greatest number that we could place was 6 \boxed{\text{Greatest number that we could place was } 6}

Arrangement 3:

In arrangement 3, 1 + 2 = 3 1 + 2 = 3 has already been placed. So we see two subcases for placing the number 4

\[\begin{array} {c|c} S_{1} &{3} & {4} \\ \hline S_{2} & {1} & {2} \end{array}

\quad \implies \quad

\begin{array} {c|c} S_{1} & \blue{3} & \blue{4} \\ \hline S_{2} & {1} & {2} & \blue{7} \end{array}

\quad \implies \quad

\begin{array} {c|c} S_{1} & {3} & {4}& \blue{6} \\ \hline S_{2} & \blue{1} & {2} & \blue{7} \end{array}

\quad \implies \quad

\begin{array} {c|c} S_{1} & {3} & {4}& 6 & \blue{5} \\ \hline S_{2} & {1} & \blue{2} & \blue{7} \end{array}

\quad \implies \quad

\begin{array} {c|c} S_{1} & \red{3} & {4}& 6 & \red{5} & \cancel{\red{8}} \\ \hline S_{2} & \red{1} & {2} & \red{7} & \cancel{\red{8}} \end{array} \]

\[\begin{array} {c|c} S_{1} &{3} \\ \hline S_{2} & {1} & {2} & {4} \end{array}

\quad \implies \quad

\begin{array} {c|c} S_{1} &{3} & \blue{6} \\ \hline S_{2} & {1} & \blue{2} & \blue{4} \end{array}

\quad \implies \quad

\begin{array} {c|c} S_{1} &{3} & 6&\blue{5} \\ \hline S_{2} & \blue{1} & {2} & \blue{4} \end{array}

\quad \implies \quad

\begin{array} {c|c} S_{1} &\blue{3} & 6& \blue{5} & \\ \hline S_{2} & {1} & {2} & {4}& \blue{8} \end{array}

\quad \implies \quad

\begin{array} {c|c} S_{1} & \red{3} & \red{6}& {5} & \cancel{\red{9}} \\ \hline S_{2} & \red{1} & {2} & {4}& \red{8} & \cancel{\red{9}} \end{array}

\]

Greatest number that we could place was 8 \boxed{\text{Greatest number that we could place was } 8}

Conclusion

The sets are:

\[\begin{align} S_{1} &= \{3, 5, 6, 7\} \\ S_{1} &= \{1, 2, 4, 8\} \end{align}

\quad \text{ OR } \quad

\begin{align} S_{1} &= \{3, 5, 6\} \\ S_{1} &= \{1, 2, 4, 7, 8\} \end{align}\]

N = 8 \implies \boxed{N= 8}

X X
Jun 21, 2018

1 2 3 4 5 6 7 8 \huge{\color{#D61F06}1}{\color{#D61F06}2}{\color{#3D99F6}3}{\color{#D61F06}4}{\color{#3D99F6}5}{\color{#3D99F6}6}{\color{#3D99F6}7}{\color{#D61F06}8}

Thanks for posting a solution, but a mathematical proof would have been encouraged, as this is just one of the many possible ways.

Rishabh Sood - 2 years, 11 months ago

Can we show why 8 is the best you can do?

Geoff Pilling - 2 years, 7 months ago

Log in to reply

Maybe.. Refer my solution

Mahdi Raza - 11 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...