Define the set consists of a consecutive integers from 1 to .
Let and be two subsets of such that
Find the largest possible value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Great Question!
We start by assorting the first three numbers 1 , 2 , 3 in Sets S 1 , S 2 . We see that there are three ways to do it:
\[\begin{array} {c|c} S_{1} &1 \\ \hline S_{2} & 2 & 3 \end{array}
\quad \quad \quad
\begin{array} {c|c} S_{1} &2 \\ \hline S_{2} & 1 & 3 \end{array}
\quad \quad \quad
\begin{array} {c|c} S_{1} &3 \\ \hline S_{2} & 1 & 2 \end{array}\]
Arrangement 1:
The general strategy to follow is to rule out the sum of elements and place it in the other Set. To be specific, in S 2 , the number 5 cannot be placed. Following this, we make the arrangements. At one particular instance, we will be able to observe that a number cannot be placed in any of the set and that will be a dead end.
\[\begin{array} {c|c} S_{1} &1 \\ \hline S_{2} & 2 & 3 \end{array}
\quad \implies \quad
\begin{array} {c|c} S_{1} &1 &\blue{5} \\ \hline S_{2} & \blue{2} & \blue{3} \end{array}
\quad \implies \quad
\begin{array} {c|c} S_{1} &\blue{1} &\blue{5} \\ \hline S_{2} & 2 & 3 &\blue{6} \end{array}
\quad \implies \quad
\begin{array} {c|c} S_{1} &\red{1} &\red{5} & \cancel{\red{4}} \\ \hline S_{2} & \red{2} & 3 &\red{6} & \cancel{\red{4}} \end{array} \]
Greatest number that we could place was 3
Arrangement 2:
We follow the same thing done in Arrangement 1.
\[\begin{array} {c|c} S_{1} &2 \\ \hline S_{2} & 1 & 3 \end{array}
\quad \implies \quad
\begin{array} {c|c} S_{1} &2 & \blue{4} \\ \hline S_{2} & \blue{1} & \blue{3} \end{array}
\quad \implies \quad
\begin{array} {c|c} S_{1} & \blue{2} & \blue{4} \\ \hline S_{2} & 1 & 3& \blue{6} \end{array}
\quad \implies \quad
\begin{array} {c|c} S_{1} & 2 & 4 & \blue{5} \\ \hline S_{2} & \blue{1} & 3& \blue{6} \end{array}
\quad \implies \quad
\begin{array} {c|c} S_{1} & \red{2} & 4 & \red{5} & \cancel{\red{7}} \\ \hline S_{2} & \red{1} & 3& \red{6} & \cancel{\red{7}} \end{array}
\]
Greatest number that we could place was 6
Arrangement 3:
In arrangement 3, 1 + 2 = 3 has already been placed. So we see two subcases for placing the number 4
\[\begin{array} {c|c} S_{1} &{3} & {4} \\ \hline S_{2} & {1} & {2} \end{array}
\quad \implies \quad
\begin{array} {c|c} S_{1} & \blue{3} & \blue{4} \\ \hline S_{2} & {1} & {2} & \blue{7} \end{array}
\quad \implies \quad
\begin{array} {c|c} S_{1} & {3} & {4}& \blue{6} \\ \hline S_{2} & \blue{1} & {2} & \blue{7} \end{array}
\quad \implies \quad
\begin{array} {c|c} S_{1} & {3} & {4}& 6 & \blue{5} \\ \hline S_{2} & {1} & \blue{2} & \blue{7} \end{array}
\quad \implies \quad
\begin{array} {c|c} S_{1} & \red{3} & {4}& 6 & \red{5} & \cancel{\red{8}} \\ \hline S_{2} & \red{1} & {2} & \red{7} & \cancel{\red{8}} \end{array} \]
\[\begin{array} {c|c} S_{1} &{3} \\ \hline S_{2} & {1} & {2} & {4} \end{array}
\quad \implies \quad
\begin{array} {c|c} S_{1} &{3} & \blue{6} \\ \hline S_{2} & {1} & \blue{2} & \blue{4} \end{array}
\quad \implies \quad
\begin{array} {c|c} S_{1} &{3} & 6&\blue{5} \\ \hline S_{2} & \blue{1} & {2} & \blue{4} \end{array}
\quad \implies \quad
\begin{array} {c|c} S_{1} &\blue{3} & 6& \blue{5} & \\ \hline S_{2} & {1} & {2} & {4}& \blue{8} \end{array}
\quad \implies \quad
\begin{array} {c|c} S_{1} & \red{3} & \red{6}& {5} & \cancel{\red{9}} \\ \hline S_{2} & \red{1} & {2} & {4}& \red{8} & \cancel{\red{9}} \end{array}
\]
Greatest number that we could place was 8
Conclusion
The sets are:
\[\begin{align} S_{1} &= \{3, 5, 6, 7\} \\ S_{1} &= \{1, 2, 4, 8\} \end{align}
\quad \text{ OR } \quad
\begin{align} S_{1} &= \{3, 5, 6\} \\ S_{1} &= \{1, 2, 4, 7, 8\} \end{align}\]
⟹ N = 8