All to the power 7?

Algebra Level 3

If α + β + γ = 4 \alpha + \beta + \gamma = 4 , α 2 + β 2 + γ 2 = 14 \alpha^2 + \beta^2 + \gamma^2 = 14 , and α 3 + β 3 + γ 3 = 34 \alpha^3 + \beta^3 + \gamma^3 = 34 , find α 7 + β 7 + γ 7 \alpha^7 + \beta^7 + \gamma^7 .


The answer is 2314.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 27, 2018

Relevant wiki: Newton's Identities

We can solve this problem using Newton's sums method (Newton's identities). First, let P n = α n + β n + γ n P^n = \alpha^n+\beta^n+\gamma^n , where n n is a positive integer. S 1 = α + β + γ S_1 = \alpha+\beta+\gamma , S 2 = α β + β γ + γ α S_2 = \alpha\beta+\beta\gamma+\gamma\alpha , and S 3 = α β γ S_3 = \alpha\beta\gamma . Then,

P 1 = S 1 = 4 P 2 = S 1 P 1 2 S 2 = 4 ( 4 ) 2 S 1 = 14 S 2 = 1 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 4 ( 14 ) 4 + 3 S 3 = 34 S 3 = 6 P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 = 4 ( 34 ) 14 6 ( 4 ) = 98 P 5 = S 1 P 4 S 2 P 3 + S 3 P 2 = 4 ( 98 ) 34 6 ( 14 ) = 274 P 6 = S 1 P 5 S 2 P 4 + S 3 P 3 = 4 ( 274 ) 98 6 ( 34 ) = 794 P 7 = S 1 P 6 S 2 P 5 + S 3 P 4 = 4 ( 794 ) 274 6 ( 98 ) = 2314 \begin{aligned} P_1 & = S_1 = 4 \\ P_2 & = S_1P_1-2S_2 = 4(4)-2S_1 = 14 & \small \color{#3D99F6} \implies S_2 = 1 \\ P_3 & = S_1P_2-S_2P_1+3S_3 = 4(14)-4+3S_3 = 34 & \small \color{#3D99F6} \implies S_3 = -6 \\ P_4 & = S_1P_3-S_2P_2+S_3P_1 = 4(34)-14 - 6(4) = 98 \\ P_5 & = S_1P_4-S_2P_3+S_3P_2 = 4(98)-34 - 6(14) = 274 \\ P_6 & = S_1P_5-S_2P_4+S_3P_3 = 4(274)-98 - 6(34) = 794 \\ P_7 & = S_1P_6-S_2P_5+S_3P_4 = 4(794)-274 - 6(98) = 2314 \end{aligned}

Therefore P 7 = α 7 + β 7 + γ 7 = 2314 P_7 = \alpha^7+\beta^7+\gamma^7 = \boxed{2314} .

Zico Quintina
Jun 27, 2018

We re-write the equations:

α + β = 4 γ ( 1 ) α 2 + β 2 = 14 γ 2 ( 2 ) α 3 + β 3 = 34 γ 3 ( 3 ) \begin{array}{rlll} \alpha + \beta &= \ \ 4 - \gamma & & \small (1) \\ \\ \alpha^2 + \beta^2 &= \ \ 14 - \gamma^2 & & \small (2) \\ \\ \alpha^3 + \beta^3 &= \ \ 34 - \gamma^3 & & \small (3) \end{array}

α 2 + 2 α β + β 2 = 16 8 γ + γ 2 ( 4 ) [ Square of ( 1 ) ] α β = γ 2 4 γ + 1 ( 5 ) [ Half the difference ( 4 ) ( 2 ) ] α 2 α β + β 2 = 13 + 4 γ 2 γ 2 ( 6 ) [ ( 2 ) ( 5 ) ] \begin{array}{rlllcccl} \alpha^2 + 2 \alpha \beta + \beta^2 &= \ \ 16 - 8\gamma + \gamma^2 & & \small (4) & & & & \small \text{[ Square of } (1) \ ] \\ \\ \alpha \beta &= \ \ \gamma^2 - 4 \gamma + 1 & & \small (5) & & & & \small \text{[ Half the difference } (4) - (2) \ ] \\ \\ \alpha ^2 - \alpha \beta + \beta^2 &= \ \ 13 + 4 \gamma - 2 \gamma^2 & & \small (6) & & & & \small [ \ (2) - (5) \ ] \\ \\ \end{array}

( α + β ) ( α 2 α β + β 2 ) = 34 γ 3 [ Factoring ( 3 ) ] ( 4 γ ) ( 13 + 4 γ 2 γ 2 ) = 34 γ 3 [ Substituting ( 1 ) and ( 6 ) ] 52 + 3 γ 12 γ 2 + 2 γ 3 = 34 γ 3 3 γ 3 12 γ 2 + 3 γ + 18 = 0 3 ( γ 3 ) ( γ 2 ) ( γ + 1 ) = 0 γ = 3 , 2 , - 1 \begin{array}{rlllcccl} (\alpha + \beta) \ (\alpha^2 - \alpha \beta + \beta^2) &= \ \ 34 - \gamma^3 & & & & & & \small \text{[ Factoring } (3) \ ] \\ \\ (4 - \gamma) \ (13 + 4 \gamma - 2 \gamma^2) &= \ \ 34 - \gamma^3 & & & & & & \small \text{[ Substituting } (1) \text{ and } (6) \ ] \\ \\ 52 + 3 \gamma - 12 \gamma^2 + 2 \gamma^3 &= \ \ 34 - \gamma^3 \\ \\ 3 \gamma^3 - 12 \gamma^2 + 3 \gamma + 18 &= \ \ 0 \\ \\ 3 (\gamma - 3) \ (\gamma - 2) \ (\gamma + 1) &= \ \ 0 \\ \\ \gamma &= \ \ 3, 2, \text{-}1 \end{array}

Using these three values in our original equations, we quickly find that ( α , β , γ ) (\alpha, \beta, \gamma) can be any permutation of ( 3 , 2 , - 1 ) (3, 2, \text{-}1) .

Regardless of which permutation we use, we will get that α 7 + β 7 + γ 7 = 2314 \alpha^7 + \beta^7 + \gamma^7 = \boxed{2314}

Oh this is a very unusual way to find the values of α , β , γ \alpha,\beta, \gamma . I would have just used the algebraic identities :

a 2 + b 2 + c 2 = ( a + b + c ) 2 2 ( a b + a c + b c ) a^2 + b^2 +c^2 = (a+b+c)^2 - 2(ab+ ac + bc) and a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 ( a b + a c + b c ) ) a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - (ab+ac+bc)) .

Thanks for sharing!

Pi Han Goh - 2 years, 11 months ago

Log in to reply

Thanks for pointing these out; I don't think I've ever seen the second one. I did know the first one but my brain still thinks mostly in terms of two variables; gonna have to work on that!

zico quintina - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...