All trigo together

Calculus Level 4

I = 2 2018 ( csc sec 1 x 2 cos tan 1 sin cot 1 x ) 2 d x I = \int_{2}^{2018}\left( \csc \sec^{-1}x^2 \cdot \cos\tan^{-1}\sin\cot^{-1}x\right)^2\,dx Find the value of I \left\lfloor I\right\rfloor .


This is an original problem

2015 2019 2016 2018

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 2 2018 ( csc ( sec 1 x 2 ) cos ( tan 1 ( sin ( cot 1 x ) ) ) ) 2 d x = 2 2018 ( x 2 x 4 1 × cos ( tan 1 ( 1 1 + x 2 ) ) ) 2 d x = 2 2018 ( x 2 x 4 1 × 1 + x 2 2 + x 2 ) 2 d x = 2 2018 ( x 2 ( x 2 1 ) ( x 2 + 2 ) ) 2 d x = 2 2018 x 4 ( x 2 1 ) ( x 2 + 2 ) d x By partial fraction decomposition = 2 2018 ( 1 4 3 ( x 2 + 2 ) + 1 6 ( x 1 ) 1 6 ( x + 1 ) ) d x = x 2 2 3 tan 1 x 2 + 1 6 ln ( x 1 x + 1 ) 2 2018 2015.603 \begin{aligned} I & = \int_2^{2018} \left(\color{#3D99F6}\csc(\sec^{-1} x^2) \color{#D61F06} \cos (\tan^{-1}(\sin (\cot^{-1}x)))\right)^2 dx \\ & = \int_2^{2018} \left({\color{#3D99F6}\frac {x^2}{\sqrt{x^4-1}}} \times \color{#D61F06} \cos \left(\tan^{-1}\left(\frac 1{\sqrt{1+x^2}}\right)\right)\right)^2 dx \\ & = \int_2^{2018} \left({\color{#3D99F6}\frac {x^2}{\sqrt{x^4-1}}} \times \color{#D61F06} \sqrt{\frac {1+x^2}{2+x^2}} \right)^2 dx \\ & = \int_2^{2018} \left(\frac {x^2}{\sqrt{(x^2-1)(x^2+2)}} \right)^2 dx \\ & = \int_2^{2018} \frac {x^4}{(x^2-1)(x^2+2)} dx & \small \color{#3D99F6} \text{By partial fraction decomposition} \\ & = \int_2^{2018} \left(1 - \frac 4{3(x^2+2)} + \frac 1{6(x-1)} - \frac 1{6(x+1)} \right) dx \\ & = x - \frac {2\sqrt 2}3 \tan^{-1} \frac x{\sqrt 2} + \frac 16 \ln \left(\frac {x-1}{x+1}\right) \bigg|_2^{2018} \\ & \approx 2015.603 \end{aligned}

Therefore, I = 2015 \lfloor I \rfloor = \boxed{2015} .

Parth Sankhe
Oct 8, 2018

You can consider a triangle where cot€= x, thus arccotx = €, then find sin of that angle and work your way down. Do the same for x^2 and the entire expression should get reduced to x^4/(x^2-1)(x^2+2), whose integration from 2 to 2018 would give the answer as 2015.6

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...