Let x 0 , x 1 , x 2 , … be a sequence of real numbers satisfying the recursion,
x n = x n − 1 x n − 2
for n = 2 , 3 , 4 , … .
If x 0 = 1 and x 1 = 1 0 0 0 0 0 0 , what is
n → ∞ lim x n ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice angle, Chew-Seong!
x 0 = 1 0 0 and x 1 = 1 0 6 . Working our way in powers it is equivalent to say that A 0 = 0 , A 1 = 6 , and 2 A n = A n − 1 + A n − 2 for n ≥ 2 . The recurrence relation is solved by standard technique to get A ∞ = 3 A 0 + 2 A 1 → A ∞ = 4 → x = 1 0 0 0 0 .
Very nice write up, Rajen! :)
Problem Loading...
Note Loading...
Set Loading...
x n lo g x n y n = x n − 1 x n − 2 = 2 1 lo g x n − 1 + 2 1 lo g x n − 2 = 2 1 y n − 1 + 2 1 y n − 2 Let y n = lo g x n
The characteristic equation is as follows:
r 2 − 2 1 r − 2 1 2 r 2 − r − 1 ( 2 r + 1 ) ( r − 1 ) ⟹ r = 0 = 0 = 0 = − 2 1 , 1
\begin{aligned} \implies y_n & = a_1 \left(\frac {-1}2\right)^n + a_2 \\ a_1 \left(\frac {-1}2\right)^n + a_2 & = \log x_n \\ a_1 \left(\frac {-1}2\right)^\color{#D61F06}{0} + a_2 & = \log x_\color{#D61F06}{0} \\ a_1+a_2 & = \log 1 = 0 \\ \implies a_2 & = - a_1 \\ \color{#3D99F6}{a_1} \left(\frac {-1}2\right)^\color{#D61F06}{1} \color{#3D99F6}{- a_1} & = \log x_\color{#D61F06}{1} \\ - \frac 32 a_1 & = \log 1000000 = 6 \\ \implies a_1 & = -4 \end{aligned}
⟹ lo g x n x n ⟹ n → ∞ lim x n = 4 ( 1 − ( 2 − 1 ) n ) = 1 0 4 ( 1 − ( 2 − 1 ) n ) = n → ∞ lim 1 0 4 ( 1 − ( 2 − 1 ) n ) = 1 0 4 = 1 0 0 0 0