All you're ever gonna be is "mean"

Calculus Level 4

Let x 0 , x 1 , x 2 , x_0, x_1, x_2,\ldots be a sequence of real numbers satisfying the recursion,

x n = x n 1 x n 2 x_n = \sqrt{x_{n-1} x_{n-2}}

for n = 2 , 3 , 4 , n = 2,3,4,\ldots .

If x 0 = 1 x_0 = 1 and x 1 = 1000000 x_1 = 1000000 , what is

lim n x n ? \large \lim_{n \to \infty} x_n ?


The answer is 10000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 25, 2016

x n = x n 1 x n 2 log x n = 1 2 log x n 1 + 1 2 log x n 2 Let y n = log x n y n = 1 2 y n 1 + 1 2 y n 2 \begin{aligned} x_n & = \sqrt{x_{n-1}x_{n-2}} \\ \log x_n & = \frac 12 \log x_{n-1} + \frac 12 \log x_{n-2} & \small \color{#3D99F6}{\text{Let }y_n = \log x_n} \\ y_n & = \frac 12 y_{n-1} + \frac 12 y_{n-2} \end{aligned}

The characteristic equation is as follows:

r 2 1 2 r 1 2 = 0 2 r 2 r 1 = 0 ( 2 r + 1 ) ( r 1 ) = 0 r = 1 2 , 1 \begin{aligned} r^2 - \frac 12 r - \frac 12 & = 0 \\ 2r^2 - r - 1 & = 0 \\ (2r+1)(r-1) & = 0 \\ \implies r & = -\frac 12, \ 1 \end{aligned}

\begin{aligned} \implies y_n & = a_1 \left(\frac {-1}2\right)^n + a_2 \\ a_1 \left(\frac {-1}2\right)^n + a_2 & = \log x_n \\ a_1 \left(\frac {-1}2\right)^\color{#D61F06}{0} + a_2 & = \log x_\color{#D61F06}{0} \\ a_1+a_2 & = \log 1 = 0 \\ \implies a_2 & = - a_1 \\ \color{#3D99F6}{a_1} \left(\frac {-1}2\right)^\color{#D61F06}{1} \color{#3D99F6}{- a_1} & = \log x_\color{#D61F06}{1} \\ - \frac 32 a_1 & = \log 1000000 = 6 \\ \implies a_1 & = -4 \end{aligned}

log x n = 4 ( 1 ( 1 2 ) n ) x n = 1 0 4 ( 1 ( 1 2 ) n ) lim n x n = lim n 1 0 4 ( 1 ( 1 2 ) n ) = 1 0 4 = 10000 \begin{aligned} \implies \log x_n & = 4 \left(1-\left(\frac {-1}2\right)^n\right) \\ x_n & = 10^{4 \left(1-\left(\frac {-1}2\right)^n\right)} \\ \implies \lim_{n \to \infty} x_n & = \lim_{n \to \infty} 10^{4 \left(1-\left(\frac {-1}2\right)^n\right)} \\ & = 10^4 = \boxed{10000} \end{aligned}

Nice angle, Chew-Seong!

Geoff Pilling - 4 years, 9 months ago
Rajen Kapur
Aug 25, 2016

x 0 = 1 0 0 x_0=10^0 and x 1 = 1 0 6 x_1=10^6 . Working our way in powers it is equivalent to say that A 0 = 0 A_0=0 , A 1 = 6 A_1=6 , and 2 A n = A n 1 + A n 2 2A_n=A_{n-1}+A_{n-2} for n 2 n\geq2 . The recurrence relation is solved by standard technique to get A = A 0 + 2 A 1 3 A = 4 x = 10000. A_\infty = \frac {A_0+2A_1}{3}\rightarrow A_\infty = 4\rightarrow x=10000.

Very nice write up, Rajen! :)

Geoff Pilling - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...