Almost equal

Calculus Level 5

The shaded areas in the image are defined by a circle of radius r r and the hyperbolas x 2 y 2 = ( r 2 ) 2 x^2-y^2=\left(\dfrac{r}{2}\right)^2 and y 2 x 2 = ( r 2 ) 2 y^2-x^2=\left(\dfrac{r}{2}\right)^2 .

Find the value of the quotient green area blue area \dfrac{\text{green area}}{\text{blue area}} .


The answer is 1.04387.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Mar 23, 2019

Due to symmetry, we only need to consider the firs half quadrant of the graph, where the ratio A green A blue \dfrac {A_{\color{#20A900}\text{green}}}{A_{\color{#3D99F6}\text{blue}}} is the same.

We know that the point P P , where the circle intersects the hyperbola, satisfies the system of equations below.

{ Hyperbola: x 2 y 2 = r 2 4 . . . ( 1 ) Circle: x 2 + y 2 = r 2 . . . ( 2 ) \begin{cases} \text{Hyperbola:} & x^2 - y^2 = \dfrac {r^2}4 & ...(1) \\ \text{Circle:} & x^2 + y^2 = r^2 & ...(2) \end{cases}

From ( 1 ) + ( 2 ) : 2 x 2 = 5 4 r 2 (1)+(2): \ 2x^2 = \dfrac 54 r^2 x = 5 8 r \implies x = \sqrt{\frac 58}r . Since x 2 + y 2 = r 2 x^2 + y^2 = r^2 , y = 3 8 r \implies y = \sqrt{\frac 38} r and P ( 5 8 r , 3 8 r ) P \left(\sqrt{\frac 58}r, \sqrt{\frac 38}r \right) .

Then the green area is given by:

A green = r 2 5 8 r x 2 r 2 4 d x + 5 8 r r r 2 x 2 d x = r 2 r 2 5 8 r ( 2 x r ) 2 1 d x + r 5 8 r r 1 ( x r ) 2 d x Let 2 x r = sec θ d x = r 2 sec θ tan θ d θ = r 2 4 0 tan 1 3 2 sec θ tan 2 θ d θ + r 2 tan 1 5 3 π 2 cos 2 ϕ d ϕ Let x r = sin ϕ d x = r cos ϕ d ϕ = r 2 4 sec θ tan θ 0 tan 1 3 2 r 2 4 0 tan 1 3 2 sec 3 θ d θ + r 2 2 tan 1 5 3 π 2 ( 1 + cos 2 ϕ ) d ϕ By integration by parts = 15 8 r 2 r 2 4 [ sin θ sec 2 θ 2 + 1 2 sec θ d θ ] 0 tan 1 3 2 + r 2 2 [ ϕ + 1 2 sin 2 ϕ ] tan 1 5 3 π 2 By reduction formula = 15 8 r 2 15 16 r 2 r 2 8 ln ( tan θ + sec θ ) 0 tan 1 3 2 + π 4 r 2 r 2 2 tan 1 5 3 15 16 r 2 = r 2 16 ( 4 π ln ( 4 + 15 ) 8 tan 1 5 3 ) 0.200564201 r 2 \begin{aligned} A_{\color{#20A900}\text{green}} & = \int_\frac r2^{\sqrt{\frac 58}r} \sqrt{x^2 - \frac {r^2}4}\ dx + \int_{\sqrt{\frac 58}r}^r \sqrt{r^2 - x^2}\ dx \\ & = {\color{#3D99F6}\frac r2 \int_\frac r2^{\sqrt{\frac 58}r} \sqrt{\left(\frac {2x}r\right)^2 - 1}\ dx} + \color{#D61F06} r \int_{\sqrt{\frac 58}r}^r \sqrt{1 - \left(\frac xr\right)^2}\ dx & \small \color{#3D99F6} \text{Let } \frac {2x}r = \sec \theta \implies dx = \frac r2 \sec \theta \tan \theta\ d\theta \\ & = {\color{#3D99F6}\frac {r^2}4 \int_0^{\tan^{-1}\sqrt{\frac 32}} \sec \theta \tan^2 \theta\ d\theta} + \color{#D61F06} r^2 \int_{\tan^{-1} \sqrt{\frac 53}}^\frac \pi 2 \cos^2 \phi \ d\phi & \small \color{#D61F06} \text{Let } \frac xr = \sin \phi \implies dx = r \cos \phi\ d\phi \\ & = {\color{#3D99F6}\frac {r^2}4 \sec \theta \tan \theta\ \bigg|_0^{\tan^{-1}\sqrt{\frac 32}} - \frac {r^2}4 \int_0^{\tan^{-1}\sqrt{\frac 32}} \sec^3 \theta\ d\theta} + \frac {r^2}2 \int_{\tan^{-1} \sqrt{\frac 53}}^\frac \pi 2 (1+ \cos 2\phi)\ d\phi & \small \color{#3D99F6} \text{By integration by parts} \\ & = \frac {\sqrt{15}}8r^2 - {\color{#3D99F6} \frac {r^2}4 \left[\frac {\sin \theta \sec^2 \theta}2 + \frac 12 \int \sec \theta\ d\theta \right]_0^{\tan^{-1}\sqrt{\frac 32}}} + \frac {r^2}2 \left[ \phi + \frac 12 \sin 2\phi \right]^\frac \pi 2_{\tan^{-1} \sqrt{\frac 53}} & \small \color{#3D99F6} \text{By reduction formula} \\ & = \frac {\sqrt{15}}8r^2 - \frac {\sqrt{15}}{16}r^2 - \frac {r^2}8 \ln (\tan \theta + \sec \theta) \bigg|_0^{\tan^{-1}\sqrt{\frac 32}} + \frac \pi 4 r^2 - \frac {r^2}2 \tan^{-1} \sqrt{\frac 53} - \frac {\sqrt{15}}{16}r^2 \\ & = \frac {r^2}{16} \left(4\pi - \ln \left(4+\sqrt{15}\right) - 8 \tan^{-1} \sqrt{\frac 53} \right) \\ & \approx 0.200564201r^2 \end{aligned}

Then A green A blue = A green π 8 r 2 A green 0.200564201 r 2 0.392699082 r 2 0.200564201 r 2 1.044 \dfrac {A_{\color{#20A900}\text{green}}}{A_{\color{#3D99F6}\text{blue}}} = \dfrac {A_{\color{#20A900}\text{green}}}{\frac \pi 8 r^2 - A_{\color{#20A900}\text{green}}} \approx \dfrac {0.200564201r^2}{0.392699082r^2 -0.200564201r^2 } \approx \boxed{1.044}

My calculations got f ed up.

Shree Ganesh - 2 years, 2 months ago

Log in to reply

Yes, computation is tough.

Chew-Seong Cheong - 2 years, 2 months ago

Log in to reply

Aren't you the legend of Brilliant?

Shree Ganesh - 2 years, 1 month ago
Gabriel Chacón
Mar 22, 2019

The green area is four times the value of the integral:

6 r 4 6 r 4 [ f ( x ) g ( x ) ] d x = 2 × 0 6 r 4 ( r 2 x 2 x 2 + ( r 2 ) 2 ) d x = = 2 × [ 1 2 x r 2 x 2 + r 2 arcsin x r 1 2 x x 2 + ( r 2 ) 2 ( r 2 ) 2 sinh 1 2 x r ] 0 6 r 4 = 0.40113 r 2 green area = 4 × 0.40113 r 2 = 1.60451 r 2 \displaystyle \int_{-\frac{\sqrt{6}r}{4}}^{\frac{\sqrt{6}r}{4}}[f(x)-g(x)]\,dx=2 \times \int_{0}^{\frac{\sqrt{6}r}{4}}\left(\sqrt{r^2-x^2}-\sqrt{x^2+\left(\frac{r}{2}\right)^2}\right)\,dx= \\ =2 \times \left[\dfrac{1}{2} x \sqrt{r^2-x^2}+r^2\arcsin{\frac{x}{r}}- \dfrac{1}{2} x \sqrt{x^2+\left(\frac{r}{2}\right)^2}-\left(\frac{r}{2}\right)^2\sinh^{-1}{\frac{2x}{r}} \right]_{0}^{\frac{\sqrt{6}r}{4}}=0.40113r^2 \\ \implies \text{green area}=4\times 0.40113r^2=1.60451r^2

blue area = π r 2 green area = 1.53708 r 2 \text{blue area}=\pi r^2-\text{green area}=1.53708r^2

The desired ratio is green area blue area = 1.60451 r 2 1.53708 r 2 = 1.04387 \dfrac{\text{green area}}{\text{blue area}}=\dfrac{1.60451r^2}{1.53708r^2}=\boxed{1.04387}

This is a replicated rectangular hyperbola. As noted elsewhere, it is sufficient to work in the lower octant of the first quadrant and that any radius could be chosen. I used a radius of 1. By working in polar coordinates, the green area can be computed in one integral, with the hyperbola being at r = 1 2 sec ( 2 θ ) r=\frac{1}{2} \sqrt{\sec (2 \theta )} , the circle being at r = 1 r=1 and 0 θ 1 2 cos 1 ( 1 4 ) 0\leq \theta \leq \frac{1}{2} \cos ^{-1}\left(\frac{1}{4}\right) , which is the angle at which the hyperbola meets the circle. green = 8 0 1 2 cos 1 ( 1 4 ) 1 2 sec ( 2 θ ) 1 r d r d θ 2 arccos 1 4 \text{green}=8 \int _0^{\frac{1}{2} \cos ^{-1}\left(\frac{1}{4}\right)}\int _{\frac{1}{2} \sqrt{\sec (2 \theta )}}^1\,r\,dr\,d\theta\Rightarrow 2 \arccos{\frac14}- arctanh 3 5 \text{arctanh}{\sqrt{\frac35}} . The answer: green π green 1.04387189088098 \frac{\text{green}}{\pi -\text{green}} \approx 1.04387189088098 .

Eric Scholz
Mar 31, 2019

I thought almost equal area implies their quotient to be close to 1. Then i thought circle implies pi. Pi/3=1.0472 - correct.

Close enough to pass... A fortunate coincidence!

Gabriel Chacón - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...