Almost Leibniz's Formula

Calculus Level 4

1 + 1 3 1 5 1 7 + 1 9 + 1 11 1 13 1 15 + 1 17 + 1 19 . . . 1+\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{9}+\frac{1}{11}-\frac{1}{13}-\frac{1}{15}+\frac{1}{17}+\frac{1}{19}-...

The sum above can be expressed in the form π a b \dfrac \pi{a^b} , where a a is a prime.

What is the value of a b ab ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Consider the Maclaurin series of:

ln ( 1 + x 1 x ) = 2 ( x + x 3 3 + x 5 5 + x 7 7 + x 9 9 + ) ln ( 1 + e π 4 i 1 e π 4 i ) = 2 ( e π 4 i + e 3 π 4 i 3 + e 5 π 4 i 5 + e 7 π 4 i 7 + e 9 π 4 i 9 + ) = 2 ( 1 + i + 1 + i 3 + 1 i 5 + 1 i 7 + 1 + i 9 + 1 + i 11 + 1 i 13 + 1 i 15 + 1 + i 17 + ) \begin{aligned} \ln \left(\frac {1+x}{1-x} \right) & = 2 \left(x + \frac {x^3}3 + \frac {x^5}5 + \frac {x^7}7 + \frac {x^9}9 + \cdots \right) \\ \ln \left(\frac {1+e^{\frac \pi 4 i}}{1-e^{\frac \pi 4 i}} \right) & = 2 \left(e^{\frac \pi 4 i} + \frac {e^{\frac {3\pi}4 i}}3 + \frac {e^{\frac {5\pi}4 i}}5 + \frac {e^{\frac {7\pi}4 i}}7 + \frac {e^{\frac {9\pi}4 i}}9 + \cdots\right) \\ & = \sqrt 2\left(1+i + \frac {-1+i}3 + \frac {-1-i}5 + \frac {1-i}7 + \frac {1+i}9 + \frac {-1+i}{11} + \frac {-1-i}{13} + \frac {1-i}{15} + \frac {1+i}{17} + \cdots \right) \end{aligned}

( 1 2 ln ( 1 + e π 4 i 1 e π 4 i ) ) = 1 + 1 3 1 5 1 7 + 1 9 + 1 11 1 13 1 15 + 1 17 + = ( 1 2 ln ( 1 + 1 2 + i 2 1 1 2 i 2 ) ) = ( 1 2 ln ( ( 2 + 1 ) i ) ) = ( 1 2 ln ( ( 2 + 1 ) e π 2 i ) ) = ( 1 2 ( ln ( 2 + 1 ) + π 2 i ) ) = π 2 2 = π 2 3 2 \begin{aligned} \implies \Im \left(\frac 1{\sqrt 2} \ln \left(\frac {1+e^{\frac \pi 4 i}}{1-e^{\frac \pi 4 i}}\right) \right) & = 1+ \frac 13 - \frac 15 - \frac 17 + \frac 19 + \frac 1{11} - \frac 1{13} - \frac 1{15} + \frac 1{17} + \cdots \\ & = \Im \left(\frac 1{\sqrt 2} \ln \left(\frac {1+\frac 1{\sqrt 2}+\frac i{\sqrt 2}}{1-\frac 1{\sqrt 2}-\frac i{\sqrt 2}}\right) \right) \\ & = \Im \left(\frac 1{\sqrt 2} \ln \left((\sqrt 2+1)i\right) \right) \\ & = \Im \left(\frac 1{\sqrt 2} \ln \left((\sqrt 2+1)e^{\frac \pi 2 i}\right) \right) \\ & = \Im \left(\frac 1{\sqrt 2} \left(\ln \left(\sqrt 2+1 \right)+ \frac \pi 2 i\right) \right) \\ & = \frac \pi {2\sqrt 2} = \frac \pi {2^\frac 32} \end{aligned}

Therefore, a b = 2 × 32 = 3 ab = 2\times 32 = \boxed 3 .


Notation: ( ) \Im(\cdot) denotes the imaginary part function.

@Chris Saplano , specify a a is an integer is not enough because 8 1 2 8^\frac 12 is also an answer in fact it cause me one try. In fact there are infinite many answer, for example 4 3 4 , 1 6 3 8 4^{\frac 34}, 16^{\frac 38} \cdots . I have changed it to a a is a prime for you.

Chew-Seong Cheong - 1 year, 1 month ago

The sum is π 2 2 \dfrac{π}{2\sqrt 2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...