n = 5 0 ∑ ∞ ( 5 0 n ) 1 = b a
The equation above holds true for positive coprime integers a and b . Find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
One can get answer using Beta and Gamma functions in not more than 2 minutes .
Log in to reply
It will be less than 1 minute, if I just applied the formula: k k − 1 j = 0 ∑ ∞ ( k j + x ) 1 = ( k − 1 x − 1 ) 1 . I just wanted to show the proof.
But Beta-Gamma functions is a monotonic way.
But this solution is very different and also I learnt this new identity
heres a solution that utilizes beta function ( 5 0 n ) 1 = n ! 5 0 ! ( n − 5 0 ) ! = Γ ( n + 1 ) Γ ( 5 1 ) Γ ( n − 4 9 ) = Γ ( n + 1 ) 5 0 Γ ( 5 0 ) Γ ( n − 4 9 ) = 5 0 β ( 5 0 , n − 4 9 ) we write the summation as S = 5 0 n = 5 0 ∑ ∞ β ( 5 0 , n − 4 9 ) = 5 0 n = 5 0 ∑ ∞ ∫ 0 1 x n − 5 0 ( 1 − x ) 4 9 d x now we will swap the sum and integral, which is legal because the sum of x n is absolutely convergent over (0,1). S = 5 0 ∫ 0 1 x − 5 0 ( 1 − x ) 4 9 n = 5 0 ∑ ∞ x n d x = 5 0 ∫ 0 1 x − 5 0 ( 1 − x ) 4 9 x 5 0 ( 1 − x ) − 1 d x = 5 0 ∫ 0 1 ( 1 − x ) 4 8 d x using ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x we have S = 5 0 ∫ 0 1 x 4 8 d x = 4 9 5 0 and the answer to the question is then trivial.
Problem Loading...
Note Loading...
Set Loading...
Using the identity
k k − 1 j = 0 ∑ ∞ ( k j + x ) 1 5 0 5 0 − 1 j = 0 ∑ ∞ ( 5 0 j + 5 0 ) 1 ⟹ n = 5 0 ∑ ∞ ( 5 0 n ) 1 = ( k − 1 x − 1 ) 1 = ( 5 0 − 1 5 0 − 1 ) 1 = 4 9 5 0 Putting x = k = 5 0
⟹ a + b = 5 0 + 4 9 = 9 9
Proof
The identity used above based on the more general identity below.
k k − 1 j = 0 ∑ M ( k j + x ) 1 = ( k − 1 x − 1 ) 1 − ( k − 1 M + x ) 1
We can prove the identity above is true for k ≥ 2 and all non-negative integers M by induction.
For M = 0 ,
k k − 1 j = 0 ∑ 0 ( k j + x ) 1 = k k − 1 × ( k x ) 1 = k k − 1 × x ! k ! ( x − k ) ! = x ! ( k − 1 ) ! ( x − k ) ! ( k − 1 ) = x ! ( k − 1 ) ! ( x − k ) ! ( x − ( x − k + 1 ) ) = ( x − 1 ) ! ( k − 1 ) ! ( x − k ) ! − x ! ( k − 1 ) ! ( x − k + 1 ) ! = ( k − 1 x − 1 ) 1 − ( k − 1 0 + x ) 1
Therefore, the identity is true for M = 0 .
Assuming the identity is true for M , then:
k k − 1 j = 0 ∑ M + 1 ( k j + x ) 1 = k k − 1 j = 0 ∑ M ( k j + x ) 1 + k k − 1 × ( k M + 1 + x ) 1 = ( k − 1 x − 1 ) 1 − ( k − 1 M + x ) 1 + ( M + 1 + x ) ! ( k − 1 ) ! ( M + 1 + x − k ) ! ( k − 1 ) = ( k − 1 x − 1 ) 1 − ( k − 1 M + x ) 1 + ( M + 1 + x ) ! ( k − 1 ) ! ( M + 1 + x − k ) ! ( M + 1 + x − ( M + 1 + x − k + 1 ) ) = ( k − 1 x − 1 ) 1 − ( k − 1 M + x ) 1 + ( M + x ) ! ( k − 1 ) ! ( M + 1 + x − k ) ! − ( M + 1 + x ) ! ( k − 1 ) ! ( M + 2 + x − k ) ! = ( k − 1 x − 1 ) 1 − ( k − 1 M + x ) 1 + ( k − 1 M + x ) 1 − ( k − 1 M + 1 + x ) 1 = ( k − 1 x − 1 ) 1 − ( k − 1 M + 1 + x ) 1
The identity is also true for M + 1 and therefore it is true for all M ≥ 0 .
For M → ∞ , k k − 1 j = 0 ∑ ∞ ( k j + x ) 1 = ( k − 1 x − 1 ) 1