Almost Perfect!

Calculus Level 5

n = 50 1 ( n 50 ) = a b \large \sum _{ n=50 }^{ \infty }{ \frac { 1}{ \binom {n} {50} } } = \frac{a}{b}

The equation above holds true for positive coprime integers a a and b b . Find a + b a+b .


The answer is 99.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 30, 2017

Using the identity

k 1 k j = 0 1 ( j + x k ) = 1 ( x 1 k 1 ) Putting x = k = 50 50 1 50 j = 0 1 ( j + 50 50 ) = 1 ( 50 1 50 1 ) n = 50 1 ( n 50 ) = 50 49 \begin{aligned} \frac {k-1}k \sum_{j=0}^\infty \frac 1{j+x \choose k} & = \frac 1{x-1 \choose k-1} & \small \color{#3D99F6} \text{Putting }x=k=50 \\ \frac {50-1}{50} \sum_{j=0}^\infty \frac 1{j+50 \choose 50} & = \frac 1{50-1 \choose 50-1} \\ \implies \sum_{n=50}^\infty \frac 1{n \choose 50} & = \frac {50}{49} \end{aligned}

a + b = 50 + 49 = 99 \implies a+b = 50+49 = \boxed{99}


Proof

The identity used above based on the more general identity below.

k 1 k j = 0 M 1 ( j + x k ) = 1 ( x 1 k 1 ) 1 ( M + x k 1 ) \large \frac {k-1}k \sum_{j=0}^M \frac 1{j+x \choose k} = \frac 1{x-1 \choose k-1} - \frac 1{M+x \choose k-1}

We can prove the identity above is true for k 2 k \ge 2 and all non-negative integers M M by induction.

For M = 0 M=\color{#D61F06}0 ,

k 1 k j = 0 0 1 ( j + x k ) = k 1 k × 1 ( x k ) = k 1 k × k ! ( x k ) ! x ! = ( k 1 ) ! ( x k ) ! x ! ( k 1 ) = ( k 1 ) ! ( x k ) ! x ! ( x ( x k + 1 ) ) = ( k 1 ) ! ( x k ) ! ( x 1 ) ! ( k 1 ) ! ( x k + 1 ) ! x ! = 1 ( x 1 k 1 ) 1 ( 0 + x k 1 ) \begin{aligned} \frac {k-1}k \sum_{j=0}^{\color{#D61F06}0} \frac 1{j+x \choose k} & = \frac {k-1}k \times \frac 1{x \choose k} \\ & = \frac {k-1}k \times \frac {k!(x-k)!}{x!} \\ & = \frac {(k-1)!(x-k)!}{x!}(k-1) \\ & = \frac {(k-1)!(x-k)!}{x!}(x - (x-k+1)) \\ & = \frac {(k-1)!(x-k)!}{(x-1)!} - \frac {(k-1)!(x-k+1)!}{x!} \\ & = \frac 1{x-1 \choose k-1} - \frac 1{{\color{#D61F06}0}+x \choose k-1}\end{aligned}

Therefore, the identity is true for M = 0 M=\color{#D61F06}0 .

Assuming the identity is true for M M , then:

k 1 k j = 0 M + 1 1 ( j + x k ) = k 1 k j = 0 M 1 ( j + x k ) + k 1 k × 1 ( M + 1 + x k ) = 1 ( x 1 k 1 ) 1 ( M + x k 1 ) + ( k 1 ) ! ( M + 1 + x k ) ! ( M + 1 + x ) ! ( k 1 ) = 1 ( x 1 k 1 ) 1 ( M + x k 1 ) + ( k 1 ) ! ( M + 1 + x k ) ! ( M + 1 + x ) ! ( M + 1 + x ( M + 1 + x k + 1 ) ) = 1 ( x 1 k 1 ) 1 ( M + x k 1 ) + ( k 1 ) ! ( M + 1 + x k ) ! ( M + x ) ! ( k 1 ) ! ( M + 2 + x k ) ! ( M + 1 + x ) ! = 1 ( x 1 k 1 ) 1 ( M + x k 1 ) + 1 ( M + x k 1 ) 1 ( M + 1 + x k 1 ) = 1 ( x 1 k 1 ) 1 ( M + 1 + x k 1 ) \begin{aligned} \frac {k-1}k \sum_{j=0}^{\color{#D61F06}M+1} \frac 1{j+x \choose k} & = \frac {k-1}k \sum_{j=0}^M \frac 1{j+x \choose k} + \frac {k-1}k \times \frac 1{{\color{#D61F06}M+1}+x \choose k} \\ & = \frac 1{x-1 \choose k-1} - \frac 1{M+x \choose k-1} + \frac {(k-1)!{(\color{#D61F06} M+1}+x-k)!}{({\color{#D61F06}M+1}+x)!}(k-1) \\ & = \frac 1{x-1 \choose k-1} - \frac 1{M+x \choose k-1} + \frac {(k-1)!{(\color{#D61F06} M+1}+x-k)!}{({\color{#D61F06}M+1}+x)!}({\color{#D61F06}M+1}+x - ({\color{#D61F06}M+1}+x - k+1)) \\ & = \frac 1{x-1 \choose k-1} - \frac 1{M+x \choose k-1} + \frac {(k-1)!{(\color{#D61F06} M+1}+x-k)!}{(M+x)!} - \frac {(k-1)!(M+2+x-k)!}{({\color{#D61F06}M+1}+x)!} \\ & = \frac 1{x-1 \choose k-1} - \frac 1{M+x \choose k-1} + \frac 1{M+x \choose k-1} - \frac 1{{\color{#D61F06}M+1}+x \choose k-1} \\ & = \frac 1{x-1 \choose k-1} - \frac 1{{\color{#D61F06}M+1}+x \choose k-1} \end{aligned}

The identity is also true for M + 1 M+1 and therefore it is true for all M 0 M \ge 0 .

For M M \to \infty , k 1 k j = 0 1 ( j + x k ) = 1 ( x 1 k 1 ) \displaystyle \frac {k-1}k \sum_{j=0}^\infty \frac 1{j+x \choose k} = \frac 1{x-1 \choose k-1}

One can get answer using Beta and Gamma functions in not more than 2 minutes .

Aakash Khandelwal - 4 years, 2 months ago

Log in to reply

It will be less than 1 minute, if I just applied the formula: k 1 k j = 0 1 ( j + x k ) = 1 ( x 1 k 1 ) \displaystyle \frac {k-1}k \sum_{j=0}^\infty \frac 1{j+x \choose k} = \frac 1{x-1 \choose k-1} . I just wanted to show the proof.

Chew-Seong Cheong - 4 years, 2 months ago

But Beta-Gamma functions is a monotonic way.

But this solution is very different and also I learnt this new identity

Kushal Bose - 4 years, 2 months ago
Aareyan Manzoor
Apr 30, 2017

heres a solution that utilizes beta function 1 ( n 50 ) = 50 ! ( n 50 ) ! n ! = Γ ( 51 ) Γ ( n 49 ) Γ ( n + 1 ) = 50 Γ ( 50 ) Γ ( n 49 ) Γ ( n + 1 ) = 50 β ( 50 , n 49 ) \dfrac{1}{{n}\choose{50}} = \dfrac{50!(n-50)!}{n!} =\dfrac{\Gamma(51)\Gamma(n-49)}{\Gamma(n+1)}=\dfrac{50\Gamma(50)\Gamma(n-49)}{\Gamma(n+1)}=50\beta(50,n-49) we write the summation as S = 50 n = 50 β ( 50 , n 49 ) = 50 n = 50 0 1 x n 50 ( 1 x ) 49 d x S=50\sum_{n=50}^\infty \beta(50,n-49)=50\sum_{n=50}^\infty \int_0^1 x^{n-50} (1-x)^{49} dx now we will swap the sum and integral, which is legal because the sum of x n x^n is absolutely convergent over (0,1). S = 50 0 1 x 50 ( 1 x ) 49 n = 50 x n d x = 50 0 1 x 50 ( 1 x ) 49 x 50 ( 1 x ) 1 d x = 50 0 1 ( 1 x ) 48 d x S=50\int_0^1 x^{-50} (1-x)^{49}\sum_{n=50}^\infty x^n dx=50\int_0^1 x^{-50} (1-x)^{49}x^{50}(1-x)^{-1} dx=50\int_0^1(1-x)^{48} dx using a b f ( x ) d x = a b f ( a + b x ) d x \int_a^b f(x)dx=\int_a^b f(a+b-x) dx we have S = 50 0 1 x 48 d x = 50 49 S=50\int_0^1 x^{48} dx = \dfrac{50}{49} and the answer to the question is then trivial.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...