"Almost same" square number?

"Almost same" square number is a type of square number having even number of digits such that for a 2 n 2n -digit number, the number formed by the last n n digits of the number is exactly 1 1 greater than the number formed by the first n n digits of the number. Find out the sum of all the 6 6 -digit "Almost same" square number.


The answer is 1755758.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let the "Almost same" square number be x 2 { x }^{ 2 } and n n be the first 3 3 digits of the number. Then,

x 2 = 1000 n + ( n + 1 ) = 1001 n + 1 x 2 1 0 ( m o d 1001 ) { x }^{ 2 }=1000n+\left( n+1 \right) =1001n+1\rightarrow { x }^{ 2 }-1\equiv 0\pmod {1001}

Because of 1001 = 7 × 11 × 13 1001=7\times11\times13 , the equation can be changed into

{ ( x 1 ) ( x + 1 ) 1 ( m o d 7 ) ( x 1 ) ( x + 1 ) 1 ( m o d 11 ) ( x 1 ) ( x + 1 ) 1 ( m o d 13 ) { x ± 1 ( m o d 7 ) x ± 1 ( m o d 11 ) x ± 1 ( m o d 13 ) \begin{cases} \left( x-1 \right) \left( x+1 \right) \equiv 1\pmod {7} \\ \left( x-1 \right) \left( x+1 \right) \equiv 1\pmod {11} \\ \left( x-1 \right) \left( x+1 \right) \equiv 1\pmod {13} \end{cases}\rightarrow \begin{cases} x\equiv \pm 1\pmod {7} \\ x\equiv \pm 1\pmod {11} \\ x\equiv \pm 1\pmod {13} \end{cases}

After consider different cases You will get these answers: x 1 , 155 , 274 , 428 , 573 , 727 , 846 , 1000 ( m o d 1001 ) x\equiv 1, 155, 274, 428, 573, 727, 846, 1000\pmod {1001} . However, by definition,

100000 < x 2 < 1000000 316 < x < 1000 100000<{ x }^{ 2 }<1000000\rightarrow 316<x<1000

Therefore, x = 428 , 573 , 727 , 846 x=428, 573, 727, 846 and the answer is 428 2 + 573 2 + 727 2 + 846 2 = 183184 + 328329 + 528529 + 715716 = 1755758 { 428 }^{ 2 }+{ 573 }^{ 2 }+{ 727 }^{ 2 }+{ 846 }^{ 2 }=183184+328329+528529+715716=\boxed {1755758}

Pedro Cardoso
Aug 3, 2019

Prints all 4 4 cases then prints their sum:

1
2
3
4
5
6
7
8
9
import math
a = 0
for i in range(100, 999):
    z = 1001*i + 1
    y = math.sqrt(z)
    if ( y - round(y) == 0):
        print(z)
        a += z
print("sum = " + str(a))

Total[Table[ If[Sqrt[1000 n + n + 1] [Element] Integers, 1000 n + n + 1, Nothing], {n, 100, 998}]] gives 1755758.

The numbers are 183184, 328329, 528529 and 715716.

You do a great job by using codes to find out the answer!

Isaac YIU Math Studio - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...