Almost symmetry!

Algebra Level 4

a 4 b c + b 4 a c + c 4 a b 8 = a 5 + b 5 + c 5 2 c 4 + b 4 + 2 a 3 + 4 a \large \frac { \frac { { a }^{ 4 } }{ bc } +\frac { { b }^{ 4 } }{ ac } +\frac { { c }^{ 4 } }{ ab } }{ 8 } =\frac { { a }^{ 5 }+{ b }^{ 5 }+{ { c }^{ 5 } } }{ 2{ c }^{ 4 }+{ b }^{ 4 }+2{ a }^{ 3 }+4a }

If a , b a,b and c c are positive real numbers that satisfy the equation above, find the value of a 2 a^2 .

1 0 4 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Adam Pet
Nov 11, 2015

By AM-GM , we have that

2 c 4 + b 4 + 2 a 3 + 4 a 8 a b c 2c^4 + b^4 + 2a^3 + 4a \geq 8abc

Multiplying the left side by 8 a b c 8abc and the right side by 2 c 4 + b 4 + 2 a 3 + 4 a 2c^4 + b^4 + 2a^3 + 4a yields a 5 + b 5 + c 5 = a 5 + b 5 + c 5 a^5 + b^5 + c^5 = a^5 + b^5 + c^5 . Therefore,

a 4 b c + b 4 a c + c 4 a b 8 a 5 + b 5 + c 5 2 c 4 + b 4 + 2 a 3 + 4 a \frac{\frac{a^4}{bc} + \frac{b^4}{ac} + \frac{c^4}{ab}}{8} \geq \frac{a^5 + b^5 + c^5}{2c^4 + b^4 + 2a^3 + 4a}

with equality holding when 2 c 4 = b 4 = 2 a 3 = 4 a 2c^4 = b^4 = 2a^3 = 4a , hence a 2 = 2 a^2 = 2 .

In the last line there is a little mistake: 2c^4=b^4=2a^3=4a.

Osvaldo Guimaraes - 5 years, 6 months ago

Log in to reply

Edited, thanks for your observation!

Adam Pet - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...