Almost Walli's Integrals

Calculus Level 5

0 sin ( x n ) d x \large \displaystyle \int_0^\infty \sin (x^n) \text{ d}x

For all positive rationals, n > 1 n > 1 , I n I_n denotes the integral as above.

If P n P_n denotes the product, r = 1 n 1 I ( n r ) \displaystyle \large \prod_{r=1}^{n-1} I_{\left( \frac{n}{r} \right) } , then evaluate the following limit L L .

L = lim n ( n P n ) 1 n L = \lim_{n \to \infty} \left( \sqrt{n} P_n \right)^{\frac{1}{n}}

Enter the value of 1000 L \displaystyle \lfloor 1000L \rfloor .

Details and Assumptions:

  • x \displaystyle \lfloor x \rfloor denotes the greatest integer less than or equal to x x .


The answer is 461.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Jon Haussmann
Jun 4, 2015

An outline that shows the main steps: We have that 0 sin ( x n ) d x = sin ( π 2 n ) Γ ( n + 1 n ) . \int_0^\infty \sin(x^n) \: dx = \sin \left( \frac{\pi}{2n} \right) \Gamma \left( \frac{n + 1}{n} \right). (For example, see http://math.stackexchange.com/questions/453811/integral-of-int-limits-0-infty-frac-sin-xn-xndx .) Then r = 1 n 1 I n / r = r = 1 n 1 sin π r 2 n r = 1 n 1 Γ ( n + r n ) . \prod_{r = 1}^{n - 1} I_{n/r} = \prod_{r = 1}^{n - 1} \sin \frac{\pi r}{2n} \cdot \prod_{r = 1}^{n - 1} \Gamma \left( \frac{n + r}{n} \right).

It can be shown that r = 1 n 1 sin π r 2 n = n 2 n 1 \prod_{r = 1}^{n - 1} \sin \frac{\pi r}{2n} = \frac{\sqrt{n}}{2^{n - 1}} and r = 1 n 1 Γ ( n + r n ) = ( 2 π ) ( n 1 ) / 2 n 1 / 2 n ( n 1 ) ! , \prod_{r = 1}^{n - 1} \Gamma \left( \frac{n + r}{n} \right) = (2 \pi)^{(n - 1)/2} \cdot n^{1/2 - n} \cdot (n - 1)!, so L = lim n ( n 2 n 1 ( 2 π ) ( n 1 ) / 2 n 1 / 2 n ( n 1 ) ! ) 1 / n . L = \lim_{n \to \infty} \left( \frac{n}{2^{n - 1}} \cdot (2 \pi)^{(n - 1)/2} \cdot n^{1/2 - n} \cdot (n - 1)! \right)^{1/n}. This works out to L = 2 π 2 e . L = \frac{\sqrt{2 \pi}}{2e}.

Great answer, Jon.

Michael Mendrin - 6 years ago

Log in to reply

Thanks!

Jon Haussmann - 6 years ago

You could have taken l n ln both sides of the limit and then the product simplifies into an easy Riemann sum.

Kartik Sharma - 5 years, 9 months ago
Aman Rajput
Jun 3, 2015

Solving the integral 0 sin ( x n ) d x = sin ( π 2 n ) γ ( n + 1 n ) \displaystyle\int\limits_0^\infty \sin(x^n) dx = \sin(\frac{\pi}{2n})\gamma(\frac{n+1}{n})

Given P n = r = 1 n 1 I ( n r ) P_n=\prod_{r=1}^ {n-1} I(\frac{n}{r})

Solving the limit:

Let y = lim n ( n P n ) 1 / n y=\lim_{n \to \infty} \left(\sqrt{n}P_n\right)^{1/n}

l o g ( y ) = lim n 1 n l o g n P n log(y)=\lim_{n \to \infty} \frac{1}{n} log{\sqrt{n}P_n}

l o g ( y ) = lim n l o g n n + lim n 1 n r = 1 n 1 l o g ( sin ( π r 2 n ) γ ( 1 + r n ) log(y)=\lim_{n \to \infty} \frac{log\sqrt{n}}{n} + \lim_{n \to \infty}\frac{1}{n}\sum_{r=1}^{n-1} log(\sin(\frac{\pi r}{2n})\gamma(1+\frac{r}{n})

l o g ( y ) = 0 1 l o g ( sin ( π x 2 ) γ ( 1 + x ) ) d x log(y)=\int_0^1 log(\sin(\frac{\pi x}{2})\gamma(1+x)) dx

I get

l o g ( y ) = 0.7742086 log(y)= -0.7742086

y = 0.461068 y=0.461068

1000 y = 461.068 1000y=461.068

The greatest integer value is 461 461 , which is the required answer.

I think you need to check your integration. I get l o g ( y ) = 0 1 l o g ( s i n ( π x 2 ) Γ ( 1 + x ) ) d x = l o g ( π 2 e ) 0.774208647355273 log(y) = \int_{0}^{1} log(sin(\frac{\pi x}{2}) \Gamma(1 + x)) dx = log(\frac{\sqrt{\frac{\pi}{2}}}{e}) \approx -0.774208647355273

D G - 6 years ago

Log in to reply

I got the same answer as you (461). I also worked out a case to check and found it was below the answer while the limit is approached from above...

Could another person who solved the problem explain why 652 is the answer?

Dylan Pentland - 6 years ago

Could U tell me how U got this answer ?

Rajdeep Dhingra - 6 years ago

@D G you know I also made the same mistake! You should see that you take the antilogarithms after getting the limit

Kunal Gupta - 5 years, 8 months ago

Can U tell me how U integrated 0 1 l o g ( s i n ( π x 2 ) Γ ( 1 + x ) ) d x \displaystyle \int_{0}^{1}{log(sin(\frac{\pi x}{2})\Gamma(1+x))dx} ?

Rajdeep Dhingra - 6 years ago

This is actually not a bad way to work this out. But unfortunately, even when using your approach, y y works out to 0.4610685... 0.4610685... , not 0.652049... 0.652049... , and so the correct answer is still 461 461 .

What I'd like to know, how did 8 8 other solvers come up with the exact same erroneous answer 0.652049... 0.652049... ?

Michael Mendrin - 6 years ago
Kartik Sharma
Aug 20, 2015

I will share my solution on how

0 s i n ( x n ) d x = s i n ( π 2 n ) Γ ( n + 1 n ) \displaystyle \int_{0}^{\infty}{sin({x}^{n}) \ dx} = sin\left(\frac{\pi}{2n}\right)\Gamma\left(\frac{n+1}{n}\right)

Okay, let's start.

First of all, we must notice some things that since,

s i n ( x ) = k = 0 ( 1 ) k x 2 k + 1 ( 2 k + 1 ) ! \displaystyle sin(x) = \sum_{k=0}^{\infty}{\frac{{(-1)}^{k} {x}^{2k+1}}{(2k+1)!}}

Then, s i n ( x ) x = k = 0 ( x ) k ( 2 k + 1 ) ! = k = 0 Γ ( k + 1 ) Γ ( 2 k + 2 ) ( x ) k k ! \displaystyle \frac{sin(\sqrt{x})}{\sqrt{x}} = \sum_{k=0}^{\infty}{\frac{{(-x)}^{k}}{(2k+1)!}} = \sum_{k=0}^{\infty}{\frac{\Gamma(k+1)}{\Gamma(2k+2)} \frac{{(-x)}^{k}}{k!}}

Well, that is the exponential generating function and it might be obvious now that I will use Ramanujan Master Theorem.

0 s i n ( x n ) d x = 1 2 n 0 s i n ( u ) u u n + 1 2 n 1 d u \displaystyle \int_{0}^{\infty}{sin({x}^{n}) \ dx} = \frac{1}{2n} \int_{0}^{\infty}{\frac{sin(\sqrt{u})}{\sqrt{u}} {u}^{\frac{n+1}{2n} -1} \ du} [As we substitute u = x n \sqrt{u} = {x}^{n} ]

= 1 2 n M ( s i n ( u ) u ; n + 1 2 n ) \displaystyle = \frac{1}{2n} M\left(\frac{sin(\sqrt{u})}{\sqrt{u}} ; \frac{n+1}{2n}\right) where M ( f ; a n ) M(f ; {a}_{n}) means Mellin Transform of f f at a n {a}_{n} .

Now, using Ramanujan Master Theorem,

= 1 2 n Γ ( n + 1 2 n ) Γ ( 1 n + 1 2 n ) Γ ( 2 2 n + 1 2 n ) \displaystyle = \frac{1}{2n} \Gamma\left(\frac{n+1}{2n}\right) \frac{\Gamma\left(1 - \frac{n+1}{2n}\right)}{\Gamma\left(2 - 2\frac{n+1}{2n}\right)}

= 1 2 n π s i n ( π ( n + 1 ) 2 n ) 1 Γ ( n 1 n ) \displaystyle = \frac{1}{2n} \frac{\pi}{sin\left(\frac{\pi(n+1)}{2n}\right)}\frac{1}{\Gamma\left(\frac{n-1}{n}\right)}

= 1 2 n π c o s ( π 2 n ) Γ ( 1 n ) s i n ( π n ) π \displaystyle = \frac{1}{2n} \frac{\pi}{cos\left(\frac{\pi}{2n}\right)} \frac{\Gamma\left(\frac{1}{n}\right)sin\left(\frac{\pi}{n}\right)}{\pi}

= Γ ( 1 n ) s i n ( π 2 n ) n \displaystyle = \frac{\Gamma\left(\frac{1}{n}\right) \ sin\left(\frac{\pi}{2n}\right)}{n}

Using basic definition of Gamma function (factorial),

= Γ ( n + 1 n ) s i n ( π 2 n ) \displaystyle = \Gamma\left(\frac{n+1}{n}\right) \ sin\left(\frac{\pi}{2n}\right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...