alpha, Beta, Gammow.

Calculus Level 3

Find α = 0 1 1 x 1 x d x \displaystyle \alpha = \int_{0}^1 \frac{1}{\sqrt{x}\sqrt{1-x}} dx

Give α \alpha to 2 decimal places.


The answer is 3.14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rishabh Jain
May 2, 2016

One substitution and you're done!! Substitute x = sin 2 θ \large x=\sin^2\theta such that d x = sin 2 θ 2 sin θ cos θ d θ \large\mathrm{d}x=\underbrace{\sin 2\theta}_{2\sin \theta\cos \theta}\mathrm{d}\theta and thus:

α = 0 π / 2 2 sin θ cos θ d θ sin θ cos θ \large\alpha=\displaystyle\int_0^{\pi/2}\dfrac{2\cancel{\sin \theta\cos \theta}\mathrm{d}\theta}{\cancel{\sin \theta \cos \theta} }

= 2 θ 0 π / 2 = π 3.14 \large =2\left|\theta\right|_0^{\pi/2}=\pi\approx 3.14

Craig Harrison
May 2, 2016

I completed the square at the bottom so that the expression under the root became (1/4 - (x-1/2)^2) this allowed me to sub in u= x-1/2. Then I got a nice standard integral resulting in Arcsin (2u).

It's also good solution, thank you (+1).

Guillermo Templado - 5 years, 1 month ago

Using Beta function we get α = B ( 1 / 2 , 1 / 2 ) = Γ ( 1 / 2 ) Γ ( 1 / 2 ) Γ ( 1 ) = π 3.14 \alpha = B(1/2,1/2) = \frac{\Gamma(1/2) \cdot \Gamma(1/2)}{\Gamma(1)} = \pi \approx 3.14

0 1 1 x 1 x d x = 0 1 2 1 u 2 d u u = x ; d u = 1 2 u d x = 2 0 1 1 1 u 2 1 1 u 2 d x = sin 1 ( u ) + C = [ 2 sin 1 ( x ) ] 0 1 = π \begin{aligned}\int_{0}^{1}\frac{1}{\sqrt{x}\sqrt{1-x}}\,dx &= \int_{0}^{1} \frac{2}{\sqrt{1-u^2}}\,du \quad\quad\quad\quad\quad{u = \sqrt{x}; \space du = \frac{1}{2u}dx} \\&= 2\int_{0}^{1}\frac{1}{\sqrt{1-u^2}} \quad\quad\quad\quad\quad\quad{\int \frac{1}{\sqrt{1-u^2}}\,dx = \sin^{-1}(u)+C} \\&= \left[2 \sin^{-1}(\sqrt{x}) \right]_{0}^{1} \\&= \pi \space \square \end{aligned}

ADIOS!!! \LARGE \text{ADIOS!!!}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...