Alpha matrix

Algebra Level 2

Find the value of α . \alpha .

{type the option number in answer box}

1 4 3 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

|A|=a^2-4 ,then use |A^3|=|A|^3 and solve the equation

Tom Engelsman
Nov 12, 2017

Let us consider the form A = S Λ S 1 A = S\Lambda S^{-1} , where Λ \Lambda and S S are the eigenvalue & eigenvector matrices respectively. Cubing the matrix A A yields A 3 = S Λ 3 S 1 A^{3} = S \Lambda^{3} S^{-1} , and its determinant can be written as:

A 3 = S Λ 3 S 1 = S S 1 Λ 3 = I Λ 3 = Λ 3 |A^{3}| = |S \Lambda^{3} S^{-1}| = |SS^{-1}| \cdot |\Lambda^{3}| = |I| \cdot |\Lambda^{3}| = |\Lambda^{3}| .

If d e t ( A λ I ) = 0 det(A - \lambda I) = 0 , then ( α λ ) 2 2 2 = 0 λ = α ± 2 (\alpha - \lambda)^2 - 2^2 = 0 \Rightarrow \lambda = \alpha \pm 2 . Substitution of these values into the Λ 3 \Lambda^{3} matrix yields:

Λ 3 = ( α + 2 ) 3 0 0 ( α 2 ) 3 = [ ( α + 2 ) ( α 2 ) ] 3 = ( α 2 4 ) 3 = 125 |\Lambda^{3}| = \begin{vmatrix} (\alpha + 2)^{3} & 0 \\ 0 & (\alpha - 2)^{3} \end{vmatrix} = [(\alpha + 2)(\alpha - 2)]^3 = (\alpha^2 - 4)^3 = 125 ;

or α 2 4 = 5 α 2 = 9 α = ± 3 . \alpha^2 - 4 = 5 \Rightarrow \alpha^2 = 9 \Rightarrow \alpha = \boxed{\pm 3}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...