If cos 2 β cos 4 α + sin 2 β sin 4 α = 1 then cos 2 α cos 4 β + sin 2 α sin 4 β = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let alpha and beta be x , y for the sake of keyboard language changing problems xD.
Then, Let a = sin 2 x ⟹ 1 − a = cos 2 x
Similarly, Let b = sin 2 y ⟹ 1 − b = cos 2 y
Then, we have: 1 − b ( 1 − a ) 2 + b a 2 = 1
⟹ ( 1 − 2 a + a 2 ) b + a 2 ( 1 − b ) = b − b 2
⟹ b − 2 a b + a 2 b + a 2 − a 2 b = b − b 2
⟹ a 2 + b 2 − 2 a b = 0
⟹ a − b = 0
⟹ a = b ⟹ sin 2 x = sin 2 y
Clearly, 1 − a = 1 − b ⟹ cos 2 x = cos 2 y
⟹ cos 2 x cos 4 y + sin 2 x sin 4 y = cos 2 x cos 4 x + sin 2 x sin 4 x = cos 2 x + sin 2 x = 1
Problem Loading...
Note Loading...
Set Loading...
Since we are dealing with positive real numbers, we can consider using AM-GM inequality as follows:
cos 2 β cos 4 α + sin 2 β sin 4 α ≥ 2 ⋅ cos β sin β cos 2 α sin 2 α
Equality occurs when
cos 2 β cos 4 α ⟹ tan 2 β tan β ⟹ tan α α = sin 2 β sin 4 α = tan 4 α = tan 2 α = tan β = 1 = β = 4 π
And
cos 2 β cos 4 α + sin 2 β sin 4 α = 2 ⋅ cos β sin β cos 2 α sin 2 α = 2 ⋅ 2 1 ⋅ 2 1 2 1 ⋅ 2 1 = 1
Since 1 is the minumum value of the LHS and it is unique, the solution of α = β = 4 π is also unique. Therefore,
cos 2 α cos 4 β + sin 2 α sin 4 β = cos 2 β cos 4 α + sin 2 β sin 4 α = 1