α \alpha to β \beta

Geometry Level 2

If cos 4 α cos 2 β + sin 4 α sin 2 β = 1 \large \dfrac{\cos^4 \alpha}{\cos^2 \beta}+\dfrac{\sin^4\alpha}{\sin^2\beta}=1 then cos 4 β cos 2 α + sin 4 β sin 2 α = ? \large \dfrac{\cos^4 \beta}{\cos^2 \alpha}+\dfrac{\sin^4\beta}{\sin^2\alpha}=?

1 8 \dfrac{1}{8} 4 4 1 1 0 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Since we are dealing with positive real numbers, we can consider using AM-GM inequality as follows:

cos 4 α cos 2 β + sin 4 α sin 2 β 2 cos 2 α sin 2 α cos β sin β \begin{aligned} \frac {\cos^4 \alpha}{\cos^2 \beta} + \frac {\sin^4 \alpha}{\sin^2 \beta} & \ge 2\cdot \frac {\cos^2 \alpha \sin^2 \alpha}{\cos \beta \sin \beta} \end{aligned}

Equality occurs when

cos 4 α cos 2 β = sin 4 α sin 2 β tan 2 β = tan 4 α tan β = tan 2 α tan α = tan β = 1 α = β = π 4 \begin{aligned} \frac {\cos^4 \alpha}{\cos^2 \beta} & = \frac {\sin^4 \alpha}{\sin^2 \beta} \\ \implies \tan^2 \beta & = \tan^4 \alpha \\ \tan \beta & = \tan^2 \alpha \\ \implies \tan \alpha & = \tan \beta = 1 \\ \alpha & = \beta = \frac \pi 4 \end{aligned}

And

cos 4 α cos 2 β + sin 4 α sin 2 β = 2 cos 2 α sin 2 α cos β sin β = 2 1 2 1 2 1 2 1 2 = 1 \begin{aligned} \frac {\cos^4 \alpha}{\cos^2 \beta} + \frac {\sin^4 \alpha}{\sin^2 \beta} & = 2\cdot \frac {\cos^2 \alpha \sin^2 \alpha}{\cos \beta \sin \beta} = 2\cdot \frac {\frac 12 \cdot \frac 12}{\frac 1{\sqrt 2} \cdot \frac 1{\sqrt 2}} = 1 \end{aligned}

Since 1 is the minumum value of the LHS and it is unique, the solution of α = β = π 4 \alpha = \beta = \frac \pi 4 is also unique. Therefore,

cos 4 β cos 2 α + sin 4 β sin 2 α = cos 4 α cos 2 β + sin 4 α sin 2 β = 1 \begin{aligned} \frac {\cos^4 \beta}{\cos^2 \alpha} + \frac {\sin^4 \beta}{\sin^2 \alpha} & = \frac {\cos^4 \alpha}{\cos^2 \beta} + \frac {\sin^4 \alpha}{\sin^2 \beta} = \boxed{1} \end{aligned}

Let alpha and beta be x , y x,y for the sake of keyboard language changing problems xD.

Then, Let a = sin 2 x 1 a = cos 2 x a=\sin ^2x \implies 1-a=\cos ^2x

Similarly, Let b = sin 2 y 1 b = cos 2 y b=\sin ^2y \implies 1-b=\cos ^2y

Then, we have: ( 1 a ) 2 1 b + a 2 b = 1 \frac{\left(1-a\right)^2}{1-b}+\frac{a^2}{b}=1

( 1 2 a + a 2 ) b + a 2 ( 1 b ) = b b 2 \implies \left(1-2a+a^2\right)b+a^2\left(1-b\right)=b-b^2

b 2 a b + a 2 b + a 2 a 2 b = b b 2 \implies b-2ab+a^2b+a^2-a^2b=b-b^2

a 2 + b 2 2 a b = 0 \implies a^2 + b^2 -2ab = 0

a b = 0 \implies a-b=0

a = b sin 2 x = sin 2 y \implies a=b \implies \sin ^2x=\sin ^2y

Clearly, 1 a = 1 b cos 2 x = cos 2 y 1-a=1-b \implies \cos ^2x=\cos ^2y

cos 4 y cos 2 x + sin 4 y sin 2 x = cos 4 x cos 2 x + sin 4 x sin 2 x = cos 2 x + sin 2 x = 1 \implies \frac{\cos ^4y}{\cos ^2x}+\frac{\sin ^4y}{\sin ^2x} = \frac{\cos ^4x}{\cos ^2x}+\frac{\sin ^4x}{\sin ^2x} = \cos ^2x+\sin ^2x = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...