Alphabetagamma!

Calculus Level 3

0 1 x 5 ( 1 x ) 5 d x \displaystyle\int_{0}^{1} x^{5} (1-x)^{5} \, dx

If the value of the integral above can be expressed in the form a b \dfrac{a}{b} where a a and b b are coprime positive integers, find the value of a × b a \times b .


The answer is 2772.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 1 x 5 ( 1 x ) 5 d x = 0 1 x 6 1 ( 1 x ) 6 1 d x = B ( 6 , 6 ) B ( m , n ) is Beta function = Γ ( 6 ) Γ ( 6 ) Γ ( 12 ) Γ ( n ) is Gamma function = 5 ! 5 ! 11 ! = 1 2772 \begin{aligned} I & = \int_0^1 x^5(1-x)^5 dx \\ & = \int_0^1 x^{6-1}(1-x)^{6-1} dx \\ & = \color{#3D99F6}{B (6,6)} \quad \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{B (m,n) \text{ is Beta function}} \\ & = \color{#3D99F6}{\frac{\Gamma (6)\Gamma (6)}{\Gamma (12)}} \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\Gamma (n) \text{ is Gamma function}} \\ & = \frac{5!5!}{11!} \\ & = \frac{1}{2772} \end{aligned}

a × b = 1 × 2772 = 2772 \Rightarrow a \times b = 1 \times 2772 = \boxed{2772}

Using reduction formula in the third step will also do the job. BTW a m a z i n g . s o l u t i o n ! ! \color{#D61F06} {**amazing . solution** !! }\\

Rishabh Jain - 5 years, 5 months ago

This is incorrect. 5 ! 5 ! 10 ! = 1 252 \dfrac{5! 5!}{10!} = \dfrac1{252} .

You've made a mistake: it should be B ( 6 , 6 ) = ( 6 1 ) ! ( 6 1 ) ! ( 6 + 6 1 ) ! = 5 ! 5 ! 11 ! = 1 2772 B(6,6) = \dfrac{(6-1)!(6-1)!}{(6+6-1)!} = \dfrac{5!5!}{11!} = \dfrac1{2772} .

Plus, you don't have to use a trigonometric substitution, one of the many formulas of the Beta Function is B ( x , y ) = 0 1 t x 1 ( 1 t ) y 1 d t = ( x 1 ) ! ( y 1 ) ! ( x + y 1 ) ! . B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} \, dt = \dfrac{(x-1)! \cdot (y-1)!}{(x+y-1)!} .

Pi Han Goh - 5 years, 5 months ago

Log in to reply

Thanks for the comments.

Chew-Seong Cheong - 5 years, 5 months ago

Beta functions will do the job :)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...