Alphabet's Problem

Solve the following, where each letter of A , B , C 0 A, B, C \neq 0 is a different single-digit number.

A B A + B C B = 104976 C \large \sqrt[A]{\overline{AB}} + \sqrt[B]{\overline{BC}} = \sqrt[C]{104976}

Note that A B \overline{AB} and B C \overline{BC} is each a two-digit number.

Find A + B + C A+B+C .

11 12 9 8

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 14, 2019

Note that 104976 = 2 4 × 3 8 104976 = 2^4\times 3^8 . For 104976 C \sqrt[C]{104976} to be an integer, C C can only be 2 2 or 4 4 . If C = 2 C = 2 , then B 2 \overline{B2} is not a power of any integer except when B = 3 B=3 , then B 2 = 32 = 2 5 \overline{B2} = 32 = 2^5 , but 32 3 \sqrt[3]{32} is not an integer.

If C = 4 C=4 , then

A B A + B 4 B = 104976 4 Possible power for B 4 = 64 = 2 6 A 6 A + 64 6 = 18 Possible powers for A 6 = 16 , 36 , but only 16 acceptable. 16 1 + 2 = 18 16 + 2 = 18 \begin{aligned} \sqrt[A]{\overline{AB}} + \color{#3D99F6} \sqrt[B]{\overline{B4}} & = \sqrt[4]{104976} & \small \color{#3D99F6} \text{Possible power for }\overline{B4} = 64 = 2^6 \\ {\color{#D61F06}\sqrt[A]{\overline{A6}}} + \color{#3D99F6} \sqrt[6]{64} & = 18 & \small \color{#D61F06} \text{Possible powers for }\overline{A6} = 16, 36 \text{, but only 16 acceptable.} \\ {\color{#D61F06}\sqrt[1]{\overline{16}}} + 2 & = 18 \\ 16 + 2 & = 18 \end{aligned}

Therefore, A + B + C = 1 + 6 + 4 = 11 A+B+C = 1+6+4 = \boxed {11} .

Hi, Thanks for writing a solution to my problem. Actually I have posted a Discussion on Brilliant.org about Buffon's Needle Problem named "Help: Reframing Buffon's Needle Problem" So, could you please go through that page and if possible help me from that problem ?

Mohd. Hamza - 2 years, 2 months ago

Log in to reply

You can actually attach the link of the page here so that I can easily access it. Just type title of the link . No space between ] and (. Or just paste the link here.

Chew-Seong Cheong - 2 years, 2 months ago

Log in to reply

Kyle T
Mar 14, 2019

<?php
for($a=1;$a<=9;$a++){
for($b=1;$b<=9;$b++){
for($c=1;$c<=9;$c++){
if( pow((10 * $a)+$b,(1/$a)) + pow((10 * $b)+$c,(1/$b)) == pow(104976,(1/$c)) ){
echo $a+$b+$c; exit; // prints 11
}
}
}
}
?>


Mohd. Hamza
Mar 14, 2019

104976 = 32 4 2 = 1 8 4 104976 = 324^2 = 18^4 Since, A B \overline{AB} and B C \overline{BC} are two digit numbers.

Therefore 104976 C = 18 \sqrt[C]{104976} = 18

C = 4 \Rightarrow \boxed{C= 4}

Now, A B A + B 4 B = 18 \sqrt[A]{AB} + \sqrt[B]{B4} = 18

According to the question, B 4 \overline{B4} is a two digit number which is also the perfect power of B B

And the only 2-digit number ending with 4 4 , which is also a perfect power is 64 64 .

64 2 = 8 \sqrt[2]{64} = 8

64 3 = 4 \sqrt[3]{64} = 4

64 6 = 2 \sqrt[6]{64} = 2

We see that 64 6 = 2 \sqrt[6]{64} = 2 satisfies the requirement.

B = 6 \Rightarrow \boxed{B=6}

Now, A 6 A + 64 6 = 104976 4 \sqrt[A]{A6} + \sqrt[6]{64} = \sqrt[4]{104976} A 6 A + 2 = 18 \Rightarrow \sqrt[A]{A6} + 2 = 18 A 6 A = 16 \Rightarrow \sqrt[A]{A6} = 16 Since A 6 \overline{A6} is a 2-digit number.

Therefore A = 1 \boxed{ A=1}

Now, Let X = A + B + C X= A + B + C X = 1 + 6 + 4 \Rightarrow X= 1 + 6 + 4 X = 11 \Rightarrow \boxed{ X= 11}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...