Alternate Odd Binomial Coefficient

( 30 1 ) ( 30 3 ) + ( 30 5 ) + ( 30 29 ) = ? \binom{30}{1} - \binom{30}{3} + \binom{30}{5} - \cdots + \binom{30}{29} = \, ?

Notation: ( M N ) = M ! N ! ( M N ) ! \dbinom MN = \dfrac {M!}{N! (M-N)!} denotes the binomial coefficient .


The answer is -32768.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 28, 2016

Consider the following:

( 1 + x ) 30 = ( 30 0 ) + ( 30 1 ) x + ( 30 2 ) x 2 + ( 30 3 ) x 3 + ( 30 4 ) + . . . + ( 30 30 ) Putting x = i = 1 ( 1 + i ) 30 = ( 30 0 ) + ( 30 1 ) i ( 30 2 ) ( 30 3 ) i + ( 30 4 ) + . . . ( 30 30 ) Taking the imaginary part { ( 1 + i ) 30 } = ( 30 1 ) ( 30 3 ) + ( 30 5 ) + . . . + ( 30 29 ) = S \begin{aligned} (1+x)^{30} & = {30 \choose 0} + {30 \choose 1}x + {30 \choose 2}x^2 + {30 \choose 3}x^3 + {30 \choose 4} + ... + {30 \choose 30} & \small {\color{#3D99F6}\text{Putting }x = i = \sqrt{-1}} \\ \implies (1+i)^{30} & = {30 \choose 0} + {30 \choose 1}i - {30 \choose 2} - {30 \choose 3}i + {30 \choose 4} + ... - {30 \choose 30} & \small {\color{#3D99F6}\text{Taking the imaginary part}} \\ \Im \left \{ (1+i)^{30} \right \} & = {30 \choose 1} - {30 \choose 3} + {30 \choose 5} + ... + {30 \choose 29} = S \end{aligned}

S = { ( 1 + i ) 30 } = { ( 2 i ) 15 } = { 2 15 ( i ) } = 2 15 = 32768 \begin{aligned} \implies S & = \Im \left \{ (1+i)^{30} \right \} = \Im \left \{ (2i)^{15} \right \} = \Im \left \{ 2^{15}(-i) \right \} = -2^{15} = \boxed{-32768} \end{aligned}

The more standard approach which extends the "substitute suitable values of x x " is to consider ( 1 i ) 30 (1-i)^{30} .

This relates to the theory of characters on groups :)

Calvin Lin Staff - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...