Alternating cubes

Algebra Level 4

1 3 2 3 + 3 3 4 3 + + 99 3 100 3 + 101 3 = ? \large { 1 }^{ 3 }-{ 2 }^{ 3 }+{ 3 }^{ 3 }-{ 4 }^{ 3 }+\cdots+{ 99 }^{ 3 }-{ 100 }^{ 3 }+{ 101 }^{ 3 } = \ ?


The answer is 522801.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Akhil Bansal
Nov 21, 2015

= 1 3 2 3 + 3 3 4 3 + + 99 3 100 3 + 101 3 \large = { 1 }^{ 3 }-{ 2 }^{ 3 }+{ 3 }^{ 3 }-{ 4 }^{ 3 }+\cdots+{ 99 }^{ 3 }-{ 100 }^{ 3 }+{ 101 }^{ 3 } = ( 1 3 + 2 3 + 3 3 + 4 3 + + 100 3 ) 2 ( 2 3 + 4 3 + 10 0 3 ) + 10 1 3 \large = ({ 1 }^{ 3 }+{ 2 }^{ 3 }+ { 3 }^{ 3 } + { 4 }^{ 3 }+\cdots+{ 100 }^{ 3 }) -2(2^3 + 4^3 + \cdots 100^3) + 101^3 = ( 100 × 101 2 ) 2 2 4 ( 1 3 + 2 3 + + 5 0 3 ) + 10 1 3 \large = \left( \dfrac{100 \times 101}{2}\right)^2 - 2^4(1^3 + 2^3 + \cdots + 50^3) + 101^3 = 505 0 2 16 ( 50 × 51 2 ) 2 + 10 1 3 \large = 5050^2 - 16\left (\dfrac{50 \times 51}{2}\right)^2 + 101^3 = 522801 \large = \boxed{522801}

Formual used : 1 3 + 2 3 + 3 3 + + n 3 = ( n ( n + 1 ) 2 ) 2 \color{#3D99F6}{\text{Formual used}} : \large 1^3 + 2^3 + 3^3 + \cdots + n^3 = \left( \dfrac{n (n+1)}{2}\right)^2

Moderator note:

Nice approach of using only n 3 \sum n^3 to find this summation :)

Why didn't you include 101 in the first summation?

Kushagra Sahni - 5 years, 6 months ago

Log in to reply

Yes, I can add 100 in first summation, but through that i want to show that if we remove 101th term, there are equal positive and negative terms, so we can seperate them more precisely..
If you combine 101 in first summation, then also there's no problem.

Akhil Bansal - 5 years, 6 months ago
Akshat Sharda
Nov 21, 2015

n = 0 50 ( 2 n + 1 ) 3 n = 1 50 ( 2 n ) 3 1 3 + n = 1 50 ( 2 n + 1 ) 3 n = 1 50 ( 2 n ) 3 1 + n = 1 50 ( 8 n 3 + 12 n 2 + 6 n + 1 ) n = 1 50 ( 8 n 3 ) 1 + 8 n = 1 50 n 3 + 12 n = 1 50 n 2 + 6 n = 1 50 n + n = 1 50 1 8 n = 1 50 n 3 1 + 12 50 × 51 × 101 6 + 6 50 × 51 2 + 50 522801 \displaystyle \sum^{50}_{n=0}(2n+1)^3-\displaystyle \sum^{50}_{n=1}(2n)^3 \\ 1^3+\displaystyle \sum^{50}_{n=1}(2n+1)^3-\displaystyle \sum^{50}_{n=1}(2n)^3 \\ 1+\displaystyle \sum^{50}_{n=1}(8n^3+12n^2+6n+1)-\displaystyle \sum^{50}_{n=1}(8n^3) \\ 1+\cancel{8\displaystyle \sum^{50}_{n=1}n^3}+12 \displaystyle \sum^{50}_{n=1}n^2+6 \displaystyle \sum^{50}_{n=1}n+ \displaystyle \sum^{50}_{n=1}1-\cancel{8 \displaystyle \sum^{50}_{n=1}n^3} \\ 1+12\cdot \frac{50×51×101}{6}+6\cdot \frac{50×51}{2}+50 \\ \boxed{522801}

Why did you add 1 in the second step

Rohan Rajpal - 5 years, 6 months ago

Log in to reply

n = 0 50 ( 2 n + 1 ) 3 = 1 3 + n = 1 50 ( 2 n + 1 ) 3 \displaystyle \sum^{50}_{n=0} (2n+1)^3= 1^3+\displaystyle \sum^{50}_{n=1}(2n+1)^3

Akshat Sharda - 5 years, 6 months ago
Michael Fuller
Nov 24, 2015

1 3 2 3 + 3 3 4 3 + + 99 3 100 3 + 101 3 { 1 }^{ 3 }-{ 2 }^{ 3 }+{ 3 }^{ 3 }-{ 4 }^{ 3 }+\cdots+{ 99 }^{ 3 }-{ 100 }^{ 3 }+{ 101 }^{ 3 }

= 1 3 + ( 3 3 2 3 ) + ( 5 3 4 3 ) + + ( 101 3 100 3 ) = { 1 }^{ 3 }+({ 3 }^{ 3 }-{ 2 }^{ 3 })+({ 5 }^{ 3 }-{ 4 }^{ 3 })+\cdots+({101 }^{ 3 }-{ 100 }^{ 3 })

= 1 + ( 3 2 ) ( 3 2 + 2 2 + 3 × 2 ) + ( 5 4 ) ( 5 2 + 4 2 + 5 × 4 ) + + ( 101 100 ) ( 101 2 + 100 2 + 101 × 100 ) = 1+(3-2)({ 3 }^{ 2 }+{ 2 }^{ 2 }+3 \times 2)+(5-4)({ 5 }^{ 2 }+{ 4 }^{ 2 }+5 \times 4)+\cdots+(101-100)({ 101 }^{ 2 }+{ 100 }^{ 2 }+101 \times 100)

= 1 + ( 2 2 + 3 2 + + 100 2 + 101 2 ) + ( 2 × 3 + 4 × 5 + + 100 × 101 ) = 1+({ 2 }^{ 2 }+{ 3 }^{ 2 }+ \cdots + { 100 }^{ 2 }+{ 101 }^{ 2 }) + (2 \times 3 + 4 \times 5 + \cdots + 100 \times 101)

= 1 + r = 2 101 r 2 + r = 1 50 2 r ( 2 r + 1 ) = 1+ \sum _{ r=2 }^{ 101 }{ { r }^{ 2 } } + \sum _{ r=1 }^{ 50 }{ 2r\left( 2r+1 \right) }

= r = 1 101 r 2 + 4 r = 1 50 r 2 + 2 r = 1 50 r = \sum _{ r=1 }^{ 101 }{ { r }^{ 2 } } + 4\sum _{ r=1 }^{ 50 }{ { r }^{ 2 } } + 2\sum _{ r=1 }^{ 50 }{ r }

= 1 6 ( 101 ) ( 102 ) ( 203 ) + 4 [ 1 6 ( 50 ) ( 51 ) ( 101 ) ] + 2 [ 1 2 ( 50 ) ( 51 ) ] = \cfrac { 1 }{ 6 } \left( 101 \right) \left( 102 \right) \left( 203 \right) + 4\left[ \cfrac { 1 }{ 6 } \left( 50 \right) \left( 51 \right) \left( 101 \right) \right] + 2\left[ \cfrac { 1 }{ 2 } \left( 50 \right) \left( 51 \right) \right]

= 522801 = \large \color{#20A900}{\boxed{522801}}

Chew-Seong Cheong
Nov 22, 2015

Let the sum be S S , then:

S = 1 3 2 3 + 3 3 4 3 + 5 3 6 3 . . . + 9 9 3 10 0 3 + 10 1 3 = n = 1 50 [ ( 2 n 1 ) 3 ( 2 n ) 3 ] + 10 1 3 = n = 1 50 [ 8 n 3 12 n 2 + 6 n 1 8 n 3 ] + 10 1 3 = n = 1 50 [ 12 n 2 + 6 n 1 ] + 10 1 3 = 12 n = 1 50 n 2 + 6 n = 1 50 n n = 1 50 1 + 10 1 3 = 12 × 50 ( 51 ) ( 101 ) 6 + 6 × 50 ( 51 ) 2 50 + 10 1 3 = 515100 + 7650 50 + 1030301 = 522801 \begin{aligned} S & = 1^3 - 2^3 + 3^3-4^3+5^3-6^3...+99^3 - 100^3+101^3 \\ & = \sum_{n=1}^{50} \left[(2n-1)^3-(2n)^3\right] + 101^3 \\ & = \sum_{n=1}^{50} \left[8n^3-12n^2+6n -1-8n^3\right] + 101^3 \\ & = \sum_{n=1}^{50} \left[-12n^2+6n -1 \right] + 101^3 \\ & = -12 \sum_{n=1}^{50} n^2 + 6 \sum_{n=1}^{50}n - \sum_{n=1}^{50} 1 + 101^3 \\ & = - 12 \times \frac{50(51)(101)}{6} + 6 \times \frac{50(51)}{2} - 50 + 101^3 \\ & = -515100+7650-50+1030301 \\ & = \boxed{522801} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...