Alternating nut

Calculus Level 4

Let s = n = 0 ( 1 ) n ( n + 1 ) ( n + 2 ) . \large s=\sum_{n=0}^\infty \frac{(-1)^n}{(n+1)(n+2)}. Find e s + 1 e^{s+1} .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Maclaurin Series

Consider the Maclaurin series of ln ( 1 + x ) \ln(1+x) as follows:

ln ( 1 + x ) = n = 1 ( 1 ) n + 1 x n n for 1 < x 1 = n = 0 ( 1 ) n x n + 1 n + 1 ln ( 1 + x ) d x = n = 0 ( 1 ) n x n + 2 ( n + 1 ) ( n + 2 ) + C where C is the constant of integration. 0 1 ln ( 1 + x ) d x = n = 0 ( 1 ) n ( n + 1 ) ( n + 2 ) = s \begin{aligned} \ln (1+x) & = \sum_{\color{#3D99F6}n=1}^\infty \frac {(-1)^{n+1}x^n}n & \small \color{#3D99F6} \text{for }-1 < x \le 1 \\ & = \sum_{\color{#D61F06}n=0}^\infty \frac {(-1)^nx^{n+1}}{n+1} \\ \int \ln (1+x)\ dx & = \sum_{n=0}^\infty \frac {(-1)^nx^{n+2}}{(n+1)(n+2)} + \color{#3D99F6} C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ \int_0^1 \ln (1+x)\ dx & = \sum_{n=0}^\infty \frac {(-1)^n}{(n+1)(n+2)} = s \end{aligned}

s = 0 1 ln ( 1 + x ) d x = ( 1 + x ) ln ( 1 + x ) x 0 1 = 2 ln 2 1 \begin{aligned} \implies s & = \int_0^1 \ln (1+x)\ dx = (1+x)\ln(1+x) - x \bigg|_0^1 = 2\ln 2 - 1 \end{aligned}

e s + 1 = e 2 ln 2 = e ln 4 = 4 \implies e^{s+1} = e^{2\ln 2} = e^{\ln 4} = \boxed{4}

Using Taylor series, we can write s ( x ) = n = 0 ( 1 ) n x n ( n + 1 ) ( n + 2 ) = ( 1 + x ) log ( 1 + x ) x x 2 , s(x)=\sum_{n=0}^\infty \frac{(-1)^nx^n}{(n+1)(n+2)}=\frac{(1+x)\log(1+x)-x}{x^2}, which converges for x [ 1 , 1 ] x\in[-1,1] . Then, s = log ( 4 ) 1 s=\log(4)-1 , leading to the result.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...