Alternating Sequence

Algebra Level 4

Let S n S_{n} denote the sum of the first n n terms of the sequence { a n } \{a_{n}\} , and S n = ( 1 ) n a n + 1 2 n S_{n}=(-1)^n a_{n}+\dfrac{1}{2^{n}} .

If S 1 + S 3 + S 5 = a b S_{1}+S_{3}+S_{5}=\dfrac{a}{b} , where a a and b b are coprime positive integers, what is a + b a+b ?


The answer is 85.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

David Vreken
Jul 7, 2019

S 2 = S 1 + a 2 = ( 1 ) 2 a 2 + 1 2 2 S 1 = 1 4 S_2 = S_1 + a_2 = (-1)^2a_2 + \frac{1}{2^2} \rightarrow S_1 = \frac{1}{4}

S 4 = S 3 + a 4 = ( 1 ) 4 a 4 + 1 2 4 S 3 = 1 16 S_4 = S_3 + a_4 = (-1)^4a_4 + \frac{1}{2^4} \rightarrow S_3 = \frac{1}{16}

S 6 = S 5 + a 6 = ( 1 ) 6 a 6 + 1 2 6 S 5 = 1 64 S_6 = S_5 + a_6 = (-1)^6a_6 + \frac{1}{2^6} \rightarrow S_5 = \frac{1}{64}

S 1 + S 3 + S 5 = 1 4 + 1 16 + 1 64 = 21 64 S_1 + S_3 + S_5 = \frac{1}{4} + \frac{1}{16} + \frac{1}{64} = \frac{21}{64} , so a = 21 a = 21 , b = 64 b = 64 , and a + b = 85 a + b = \boxed{85} .

S n = ( 1 ) n a n + 1 2 n Given S n + 1 = ( 1 ) n + 1 a n + 1 + 1 2 n + 1 For odd n S n o d d + a n + 1 = a n + 1 + 1 2 n + 1 S n o d d = 1 2 n + 1 \begin{aligned} S_n & = (-1)^n a_n + \frac 1{2^n} & \small \color{#3D99F6} \text{Given} \\ \implies S_{n+1} & = (-1)^{n+1}a_{n+1} + \frac 1{2^{n+1}} & \small \color{#3D99F6} \text{For odd }n \\ S_{n_{\color{#3D99F6}odd}} + a_{n+1} & = a_{n+1} + \frac 1{2^{n+1}} \\ \implies S_{n_{\color{#3D99F6}odd}} & = \frac 1{2^{n+1}} \end{aligned}

Therefore, S 1 + S 3 + S 5 = 1 2 2 + 1 2 4 + 1 2 6 = 2 4 + 2 2 + 1 2 6 = 21 64 \begin{aligned} S_1 + S_3 + S_5 & = \frac 1{2^2} + \frac 1{2^4} + \frac 1{2^6} = \frac {2^4+2^2+1}{2^6} = \frac {21}{64} \end{aligned}

a + b = 21 + 64 = 85 \implies a+b = 21+64 = \boxed{85} .

Alex Burgess
Jul 9, 2019

Following on from the answers given by observing S 2 k S 2 k 1 = 1 2 2 k S_{2k} \implies S_{2k-1} = \frac{1}{2^{2k}} :

S 2 k 1 = a 2 k 1 + 1 2 2 k 1 = 1 2 2 k S_{2k-1} = - a_{2k-1} + \frac{1}{2^{2k-1}} = \frac{1}{2^{2k}} .

Hence, a 2 k 1 = 1 2 2 k 1 1 2 2 k = 1 2 2 k a_{2k-1} = \frac{1}{2^{2k-1}} - \frac{1}{2^{2k}} = \frac{1}{2^{2k}} .


Looking at S 2 k 1 = ( a 1 + a 2 ) + ( a 3 + a 4 ) + . . . + a 2 k 1 = 1 2 2 k = a 2 k 1 S_{2k-1} = (a_1 + a_2) + (a_3 + a_4) + ... + a_{2k-1} = \frac{1}{2^{2k}} = a_{2k-1} , and using a process of induction we get a 2 k = a 2 k 1 = 1 2 2 k a_{2k} = -a_{2k-1} = -\frac{1}{2^{2k}} .

So our sequence is: { a n } = 1 4 , 1 4 , 1 16 , 1 16 , 1 64 , . . . \{ a_n \} = \frac{1}{4}, -\frac{1}{4}, \frac{1}{16}, -\frac{1}{16}, \frac{1}{64}, ...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...