y = x − x + x − x + ⋯
Given that ∫ 1 . 7 5 4 . 7 5 y d x = b a , where a and b are coprime positive integers, find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let y = ( x − z ) 1 / 2 Hence z is the similar nested root alternating with a positive sign first.
Hence z = ( x + y ) 1 / 2
Now square both these expressions and subtract them. Since is y not equal to negative of z we get
y = z − 1
Substitute this in the first expression and solve for z. Now obtain y and integrate
Good question Rohith
me too :) :P
Problem Loading...
Note Loading...
Set Loading...
y y 2 = x − x + x − x + ⋯ = x − z = x − z . . . ( 1 ) Let z = x + x − x + ⋯
z z z 2 = x + x − x + x − ⋯ = x + y = x + y . . . ( 2 )
Therefore,
( 2 ) − ( 1 ) : z 2 − y 2 ( z + y ) ( z − y ) z − y z = y + z = y + z = 1 = y + 1 For y = z
( 1 ) : y 2 = x − z = x − 1 − y
y 2 + y + 1 − x ⟹ y = 0 = 2 − 1 + 1 − 4 + 4 x = − 2 1 + x − 4 3 A quadratic equation of y y > 0
Then we have:
∫ 1 . 7 5 4 . 7 5 y d x = ∫ 4 7 4 1 9 − 2 1 + x − 4 3 d x = − 2 x + 3 2 ( x − 4 3 ) 2 3 ∣ ∣ ∣ ∣ 4 7 4 1 9 = − 2 3 + 3 2 ( 8 − 1 ) = 6 1 9
⟹ a + b = 1 9 + 6 = 2 5