Alternating signs

Calculus Level 5

y = x x + x x + \displaystyle y= \sqrt{x-\sqrt{x+\sqrt{x-\sqrt{x+\sqrt{\cdots}}}}}

Given that 1.75 4.75 y d x = a b \displaystyle \int_{1.75}^{4.75} y \,dx = \frac{a}{b} , where a a and b b are coprime positive integers, find a + b a+b .


If you are looking for more such twisted questions, Twisted problems for JEE aspirants is for you!


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Feb 20, 2017

y = x x + x x + Let z = x + x x + = x z y 2 = x z . . . ( 1 ) \begin{aligned} y & = \sqrt{x-\color{#3D99F6}\sqrt{x + \sqrt{x-\sqrt{x+\sqrt{\cdots}}}}} & \small \color{#3D99F6} \text{Let }z = \sqrt{x + \sqrt{x-\sqrt{x+\sqrt{\cdots}}}} \\ & = \sqrt{x-z} \\ y^2 & = x - z \quad ...(1) \end{aligned}

z = x + x x + x z = x + y z 2 = x + y . . . ( 2 ) \begin{aligned} z & = \sqrt{x+\sqrt{x - \sqrt{x+\sqrt{x-\sqrt{\cdots}}}}} \\ z & = \sqrt{x+y} \\ z^2 & = x + y \quad ... (2) \end{aligned}

Therefore,

( 2 ) ( 1 ) : z 2 y 2 = y + z ( z + y ) ( z y ) = y + z For y z z y = 1 z = y + 1 \begin{aligned} (2)-(1): \quad z^2 - y^2 & = y+z \\ (z+y)(z-y) & = y+z & \small \color{#3D99F6} \text{For } y \ne z \\ z-y & = 1 \\ z & = y+1 \end{aligned}

( 1 ) : y 2 = x z = x 1 y \begin{aligned} (1): \quad y^2 & = x - z \\ & = x - 1 - y \end{aligned}

y 2 + y + 1 x = 0 A quadratic equation of y y = 1 + 1 4 + 4 x 2 y > 0 = 1 2 + x 3 4 \begin{aligned} y^2 + y + 1 - x & = 0 & \small \color{#3D99F6} \text{A quadratic equation of }y \\ \implies y & = \frac {-1+\sqrt{1-4+4x}}2 & \small \color{#3D99F6} y > 0 \\ & = - \frac 12 + \sqrt{x - \frac 34} \end{aligned}

Then we have:

1.75 4.75 y d x = 7 4 19 4 1 2 + x 3 4 d x = x 2 + 2 3 ( x 3 4 ) 3 2 7 4 19 4 = 3 2 + 2 3 ( 8 1 ) = 19 6 \begin{aligned} \int_{1.75}^{4.75} y \ dx & = \int_\frac 74 ^{\frac {19}4} - \frac 12 + \sqrt{x - \frac 34} \ dx \\ & = - \frac x2 + \frac 23 \left( x - \frac 34 \right)^\frac 32 \bigg|_\frac 74 ^{\frac {19}4} \\ & = - \frac 32 + \frac 23 (8-1) \\ & = \frac {19}6 \end{aligned}

a + b = 19 + 6 = 25 \implies a + b = 19+6 = \boxed{25}

Let y = ( x z ) 1 / 2 y= (x-z)^ {1/2} Hence z is the similar nested root alternating with a positive sign first.

Hence z = ( x + y ) 1 / 2 z= (x+y) ^ {1/2}

Now square both these expressions and subtract them. Since is y not equal to negative of z we get

y = z 1 y=z-1

Substitute this in the first expression and solve for z. Now obtain y and integrate

Good question Rohith

Aakash Khandelwal
Feb 19, 2017

I'm Lovin' it!

me too :) :P

Rohith M.Athreya - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...