Alternating sum of squares

Algebra Level 1

What is the value of

1 0 2 9 2 + 8 2 7 2 + 6 2 5 2 + 4 2 3 2 + 2 2 1 2 ? 10^2 - 9^2 + 8^2 - 7^2 + 6^2 - 5^2 + 4^2 - 3^2 + 2^2 - 1^2 ?


The answer is 55.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

42 solutions

Lorenc Bushi
Dec 22, 2013

Notice that : 1 0 2 9 2 = ( 10 + 9 ) ( 10 9 ) = 19 10^2-9^2=(10+9)(10-9)=19

8 2 7 2 = ( 8 + 7 ) ( 8 7 ) = 15 8^2-7^2=(8+7)(8-7)=15

6 2 5 2 = ( 6 + 5 ) ( 6 5 ) = 11 6^2-5^2=(6+5)(6-5)=11

4 2 3 2 = ( 4 + 3 ) ( 4 3 ) = 7 4^2-3^2=(4+3)(4-3)=7

2 2 1 2 = ( 2 + 1 ) ( 2 1 ) = 3 2^2-1^2=(2+1)(2-1)=3 .Therefore the sum S = 19 + 15 + 11 + 7 + 3 S=19+15+11+7+3 which is an arithmetic progression with d = 4 d=4 , a 1 = 3 a_1=3 and n = 5 n=5 .We can use the formula :

S = n 2 ( 2 a 1 + ( n 1 ) d ) S=\frac{n}{2}(2a_1+(n-1)d) , and by substituting we get S = 55 S=55

100-81+64-49+36-25+16-9+4-1

محمد ربيعة الدندشي - 7 years, 5 months ago

Log in to reply

easy solution

Fatima Gumandoy - 7 years, 5 months ago

Could you please tell me about a source from where i could understand the formula in the last line, on this website

Muhammad Khan - 7 years, 5 months ago

Log in to reply

HI! Do i no u? Well, ofcourse i do. You are my classmate. :P

Muhammad Tariq - 7 years, 5 months ago

That is the formula for sum of n terms of an arithmetic progression. You will learn it in class 10

Kushagra Sahni - 7 years, 3 months ago

nice solution!

Дміт Кцмаг - 7 years, 5 months ago

nice

sunil kumar - 7 years, 5 months ago

good 1 sir

Ghulam Murtaza - 7 years, 5 months ago

55

Janu Janu - 7 years, 4 months ago

Easy

Prayogi Aja - 7 years, 4 months ago

simple

DHIWAKAR S - 7 years, 3 months ago

100-81+64-49+36-25+16-9+4-1 This is silly problems

Muzaheed T - 7 years, 3 months ago

Hi Lorenc Bushi, you have a beatiful solution. That was impressive! Hey can we be friends in brilliant.org?

Junn Ree Billones Montilla - 6 years, 2 months ago

Muhammad Khan:http://en.wikipedia.org/wiki/Arithmetic_progression

Lorenc Bushi - 7 years, 5 months ago
Maria Felicita
Dec 24, 2013

i think that the easiesr solution is

10+9+8+7+6+5+4+3+2+1

if u still don't understand u can comment :)

how? i don' understand -_-

Agung Cahyadi - 7 years, 5 months ago

Log in to reply

Take a look the solution by Lorenc Bushi (It takes place above this solution). The final answer will form S = 3 + 7 + 11 + 15 + 19 S=3+7+11+15+19 , then expand like this: S = ( 1 + 2 ) + ( 3 + 4 ) + ( 5 + 6 ) + ( 7 + 8 ) + ( 9 + 10 ) . S=(1+2)+(3+4)+(5+6)+(7+8)+(9+10).

Tunk-Fey Ariawan - 7 years, 4 months ago

Brilliant!! :-)

Pradeep Malleshwara - 7 years, 5 months ago

this is the simplest mothed

Muhammad Jamil - 7 years, 5 months ago

lol.

Sachin Surendran - 7 years, 5 months ago

Didn't get it....can you please elaborate ?

Aman Srivastava - 7 years, 5 months ago

Log in to reply

Take a look the solution by Lorenc Bushi (It takes place above this solution). The final answer will form S = 3 + 7 + 11 + 15 + 19 S=3+7+11+15+19 , then expand like this: S = ( 1 + 2 ) + ( 3 + 4 ) + ( 5 + 6 ) + ( 7 + 8 ) + ( 9 + 10 ) S=(1+2)+(3+4)+(5+6)+(7+8)+(9+10) .

Tunk-Fey Ariawan - 7 years, 4 months ago

3 words for you, WOW

windy stefani - 7 years, 4 months ago

How!!

Shakil Ahmed - 7 years, 4 months ago

Smart... :)

Venky Enumula - 7 years, 4 months ago

TRICKY!!!

prachi dave - 7 years, 3 months ago
Sunil Pradhan
Dec 23, 2013

10^2 − 9^2 +8^ 2 −7^ 2 +6^ 2 −5^ 2 +4^ 2 −3^ 2 +2^ 2 −1^ 2 ?

= (10 + 9)(10 – 9) + (8 +7)(8 – 7) + (6 + 5)(6 – 5) + (4 + 3)(4 – 3) + (2 + 1)(2 – 1)

= (10 + 9) + (8 +7) + (6 + 5) + (4 + 3) + (2 + 1)

= sum of numbers from 1 to 10 = 10 × 11/2 = 55

Use the formula a^2 – b^2 = (a + b)(a – b)

Sunil Pradhan - 7 years, 5 months ago
Lakshmi Tumati
Jan 3, 2014

A square of a number is the number multiplied by itself. You can figure it out either by figuring out all of the squares and adding and subtracting the numbers as the question says, or you can add up all of the numbers without including the 2's for the squares. 10+9+8+7+6+5+4+3+2+1=55.

Jobayer Sheikh
Dec 26, 2013

a 2 a^{2} - b 2 b^{2} = ( a + b ) (a - b)

Here every ( a - b ) will be 1

So every two term goes to :

( 10 + 9 ) + ( 8 + 7 ) + ( 6 + 5 ) + ( 4 + 3 ) + ( 2 + 1 )

=n (n + 1) / 2

=10 (10 + 1) / 2

=55

Wow, this is the easiest and legit answer I've seen here. Dont know why people dont vote it.

Teerapat Jirasirikul - 7 years, 4 months ago

4^2 - 3^2 + 2^2 - 1^2 =

(4+3)(4-3) + (2+1)(2-1) =

4 + 3 + 2 + 1

That way the answer is:

10+9+8+7+6+5+4+3+2+1 =

55

Jenny Rose Reyes
Jan 2, 2014

10^2-9^2+8^2-7^2+6^2-5^2+4^2-3^2+2^2-1^2 simplify each to get.. 100-81+64-49+36-25+16-9+4-1 then solve according to the properties given Ans: 55

this is the best and simple way

Ayesha Sheikh - 7 years, 5 months ago
Ghulam Murtaza
Dec 25, 2013

100-81+64-49+36-25+16-9+3=19+15+11+7+3=55

Muhammad Jamil
Dec 25, 2013

=100-81+64-49+36-25+16-9+4-1 =55

Ajay Rana
Dec 24, 2013

For two consecutive numbers square difference is the sum of numbers like (10 * 10) - (9 * 9) = 10 + 9. This will solve the problem quick.

nice formulae

rishabh agnihotri - 7 years, 5 months ago
Ravindra Sali
May 6, 2015

100-81+64-49+36-25+16-9+4-1=55

Utkarsh Grover
Oct 18, 2014

using the formula a^2 - b^2 =(a+b)(a-b) we get (10+9)(1)+(8+7)(1)+(6+5)(1)+(4+3)(1)+(2+1)(1) which simplifies to 10+9+8+7+6+5+4+3+2+1

To get the sum of the series we can count it or we can use the formula (n)(n+1)/2 which'll again simplify to 10(10+1)/2 which is equal to ,the solution,55

Mayank Holmes
May 24, 2014

S=( (1) ^ 2 + (2) ^2 + ............. (10) ^ 2 ) - ( 2* ( (2) ^2 ( 1^2 + 2^2 + 3^2 + 4^2 + 5^2) ) )
what we have to find is (-S)

Thine Canedo
Mar 17, 2014

100-81+64-49+36-25+16-9+2-1=55

Iranna Hubballi
Mar 17, 2014

(10^2-9^2)=,100-81=19, (8^2-7^2)=,64-49=15, (6^2-5^2)=,36-25=9, (4^2-3^2)=,16-9=7, (2^2-1^2)=,4-1=3. so finally answer is 19+15+9+7+3=55.

Shriram Pillai
Jan 30, 2014

19+15+11+7+3=55

Lucky Khan
Jan 27, 2014

simply addition and subtraction

Amit Tomar
Jan 26, 2014

there is pattern forming in this question-

10^2 - 9^2 =19

8^2 - 7^2 =15 ...... & So on

Therefore a series is forming with difference 4 -

19+15+11+7+3=55

sum of numbers 1 to 10 = 55

Akhil Akhi
Jan 21, 2014

a^2-b^2=(a+b)(a-b).calculate all 10^2-9^2=19,8^2-7^2=15,6^2-5^2=11,4^2-3^2=7,2^2-1^2=3.then 19+15+11+7+3=55.

Manoj Gupta
Jan 20, 2014

(10-9)(10+9) + (8-7)(8+7) + .........+(2-1)(2+1) = 19+15+11+7+3 = 55

Pretty Girl
Jan 18, 2014

TAKE the positive and negative values separately. Add positive values. from negative values take negative sign as common. and solve it.

100+64+36+16+4 = 220 81+49+25+9+1 =165 less 220-165 = 55 ans

Pushkar Parakh
Jan 14, 2014

(10 + 9)(10 - 9) + (8 +7)(8-7) +(6+5)(6-5) + (4+3)(4-3) +(2+1)(2-1) or 10+9+8+7+6+5+4+3+2+1

Mahmoud Hesham
Jan 11, 2014

with calculator :D

Neil Jake Doria
Jan 10, 2014

100-81+64-49+36-25+16-9+4-1 = 55

Oscar Murphy
Jan 6, 2014

55

Shankhadeep Dey
Jan 5, 2014

100-81+64-49+36-25+16-9+4-1=55

Victor Loh
Jan 4, 2014

Note that 1 0 2 9 2 = 10 + 9 10^{2}-9^{2} = 10 + 9 , 8 2 7 2 = 8 + 7 8^{2}-7^{2} = 8 + 7 ...

Hence

1 0 2 9 2 + 8 2 . . . 3 2 + 2 2 1 2 10^{2}-9^{2}+8^{2}-...-3^{2}+2^{2}-1^{2}

= 10 + 9 + 8 + . . . + 3 + 2 + 1 =10 + 9 + 8 + ... + 3 + 2 + 1

= 10 × 11 2 = 55 = \frac{10 \times 11}{2} = \boxed{55} .

Charlene Antonio
Jan 4, 2014

10^2 - 1^2 = 99 -9^2 + 2^2 = -77 8^2 - 3^2 = 55 -7^2 + 4^2 = -33 6^2 - 5^2 = 11 55 is in the middle...answer is 55...i just figured that there is a pattern..

Hassan Alsamahi
Jan 3, 2014

100-81+64-49+36-25+16-9+4-1=55

seperate the positive terms & also the negative terms.... after the above step we have 220 (solving +terms) & -165 ( negative terms) ...........=55

Asma Arshad
Dec 27, 2013

100-91+64-49+36-25+16-9+4-1=55

Sachin Surendran
Dec 26, 2013

100-81+64-49+36-25+16-9+4-1=55

Gulraiz Shah
Dec 26, 2013

55 is the correct answer

Naveenkumar Nani
Dec 26, 2013

19+15+11+7+3=55

Noor Kamran
Dec 26, 2013

(100)-(81)+(64)-(49)+(36)-(25)+(16)-(9)+(4)-(1)=55

Just take the squares and solve!

Rahul Kumar
Dec 25, 2013

(10+9)(10-9) + (8+7)(8-7) +...........+ (2+1)(2-1) =1+2+3+4+5+6+7+8+9+10 =55

Muzzammal Alfath
Dec 24, 2013

(2+1)(2-1)+(4+3)(4-3)+(6+5)(6-5)+(8+7)(8-7)+(10+9)(10-9)=3+7+11+15+19=55

Sharath Chandra
Dec 23, 2013

simply , this is not a bog series so we can calculate easily sum even number squares are 210 and odd are 155 210-155=55 u can use series formula

Prem Kumar Kittur
Dec 23, 2013

=100-81+64-49+36-25+16-9+4-1 =55

ok

Zeeshan Shan - 7 years, 5 months ago
Sumukha Fluke
Dec 23, 2013

Getting the squares of the numbers given ,100-99+64-49+36-25+16-9+4-1 rearrange the terms.100+64+36+16+4-99-49-25-1-9.adding positive numbers we get 220.by adding negative numbers we get 165.By subtraction, 220-165=55

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...