Alternating Sums and Areas

Calculus Level 4

Let x < 1 |x| < 1 and ( 0 < a < 1 ) (0 < a < 1) .

If f ( x ) = n = 1 ( 1 ) n + 1 n 6 x n f(x) = \sum_{n = 1}^{\infty} (-1)^{n + 1} n^6 x^n and g ( x ) = n = 1 ( 1 ) n + 1 n 5 x n g(x) = \sum_{n = 1}^{\infty} (-1)^{n + 1} n^5 x^n and the region R R bounded by f f and g g on [ a 1 , 0 ] [a - 1,0] has area A R = 11 a 6 94 a 5 9609 a 4 + 3170 a 3 + 330 a 2 488 a + 119 a 6 2 ln ( a ) A_{R} = \dfrac{11a^6 - 94a^5 - 9609a^4 + 3170a^3 + 330a^2 - 488a + 119}{a^6} - 2\ln(a) , find the real value of a a and express the answer as the value of A R A_{R} to six decimal places.


The answer is 75708175.605170.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
May 12, 2018

Let x < 1 |x| < 1 and ( 0 < a < 1 ) (0 < a < 1) .

n = 1 n x n = j = 1 n = j x n = 1 1 x j = 1 x j = 1 1 x ( x ) 1 1 x = x ( 1 x ) 2 \sum_{n = 1}^{\infty} n x^n = \sum_{j = 1}^{\infty} \sum_{n = j}^{\infty} x^n = \dfrac{1}{1 - x}\sum_{j = 1}^{\infty} x^{j} = \dfrac{1}{1 - x}(x)\dfrac{1}{1 - x} = \dfrac{x}{(1 - x)^2}

( x x 1 ) ( 1 x ) ( x x 1 ) = x ( x 1 ) 2 . (\dfrac{x}{x - 1})(\dfrac{1}{x})(\dfrac{x}{x - 1}) = \dfrac{x}{(x - 1)^2}.

n = 1 n 2 x n = j = 1 ( n = j n x n ) = \sum_{n = 1}^{\infty} n^2 x^n = \sum_{j = 1}^{\infty} (\sum_{n = j}^{\infty} n x^n) = 1 1 x j = 1 ( j x j ) + x ( 1 x ) 2 j = 1 x j = \dfrac{1}{1 - x}\sum_{j = 1}^{\infty} (j x^j) + \dfrac{x}{(1 - x)^2}\sum_{j = 1}^{\infty} x^j =

( 1 1 x ) ( x ( 1 x ) 2 ) + ( x ( 1 x ) 2 ) ( x 1 x ) = (\dfrac{1}{1 - x})(\dfrac{x}{(1 - x)^2}) + (\dfrac{x}{(1 - x)^2})(\dfrac{x}{1 - x}) = x 2 + x ( 1 x ) 3 \dfrac{x^2 + x}{(1 - x)^3} .

n = 1 n 3 x n = j = 1 n = j n 2 x n = \sum_{n = 1}^{\infty} n^3 x^n = \sum_{j = 1}^{\infty} \sum_{n = j}^{\infty} n^2 x^{n} = 1 1 x j = 1 j 2 x j + 2 x ( 1 x ) 2 j = 1 j x j + x 2 + x ( 1 x ) 3 j = 1 x j = ( 1 1 x ) ( x 2 + x ( 1 x ) 3 ) + \dfrac{1}{1 - x}\sum_{j = 1}^{\infty} j^2 x^j + \dfrac{2x}{(1 - x)^2}\sum_{j = 1}^{\infty} j x^j + \dfrac{x^2 + x}{(1 - x)^3}\sum_{j = 1}^{\infty} x^j = (\dfrac{1}{1 - x})(\dfrac{x^2 + x}{(1 - x)^3}) + ( 2 x ( 1 x ) 2 ) ( x ( 1 x ) 2 ) + ( x 2 + x ( 1 x ) 3 ) ( x 1 x ) = (\dfrac{2x}{(1 - x)^2})(\dfrac{x}{(1 - x)^2}) + (\dfrac{x^2 + x}{(1 - x)^3})(\dfrac{x}{1 - x}) = x 3 + 4 x 2 + x ( 1 x ) 4 \dfrac{x^3 + 4x^2 + x}{(1 - x)^4} .

n = 1 n 4 x n = j = 1 n = j n 3 x n = \sum_{n = 1}^{\infty} n^4 x^n = \sum_{j = 1}^{\infty} \sum_{n = j}^{\infty} n^3 x^{n} = 1 1 x j = 1 j 3 x j + 3 x ( 1 x ) 2 j = 1 j 2 x j + 3 ( x 2 + x ) ( 1 x ) 3 j = 1 j x j + x 3 + 4 x 2 + x ( 1 x ) 4 j = 1 x j = \dfrac{1}{1 - x}\sum_{j = 1}^{\infty} j^3 x^j + \dfrac{3x}{(1 - x)^2}\sum_{j = 1}^{\infty} j^2 x^j + \dfrac{3(x^2 + x)}{(1 - x)^3}\sum_{j = 1}^{\infty} j x^j + \dfrac{x^3 + 4x^2 + x}{(1 - x)^4}\sum_{j = 1}^{\infty} x^j =

= ( 1 1 x ) ( x 3 + 4 x 2 + x ( 1 x ) 4 ) + = (\dfrac{1}{1 - x})( \dfrac{x^3 + 4x^2 + x}{(1 - x)^4}) + ( 3 x ( 1 x ) 2 ) ( x 2 + x ( 1 x ) 3 ) + ( 3 ( x 2 + x ) ( 1 x ) 3 ) ( x ( 1 x ) 2 ) + (\dfrac{3x}{(1 - x)^2})(\dfrac{x^2 + x}{(1 - x)^3}) + (\dfrac{3(x^2 + x)}{(1 - x)^3})(\dfrac{x}{(1 - x)^2}) + x 3 + 4 x 2 + x ( 1 x ) 4 ( x 1 x ) = x 4 + 11 x 3 + 11 x 2 + x ( 1 x ) 5 \dfrac{x^3 + 4x^2 + x}{(1 - x)^4}(\dfrac{x}{1 - x}) = \dfrac{x^4 + 11x^3 + 11x^2 + x}{(1 - x)^5} .

n = 1 n 5 x n = j = 1 n = j n 4 x n = \sum_{n = 1}^{\infty} n^5 x^n = \sum_{j = 1}^{\infty} \sum_{n = j}^{\infty} n^4 x^{n} =

1 1 x j = 1 j 4 x j + 4 x ( 1 x ) 2 j = 1 j 3 x j + 6 ( x 2 + x ) ( 1 x ) 3 j = 1 j 2 x j + 4 x 3 + 4 x 2 + x ( 1 x ) 4 j = 1 j x j \dfrac{1}{1 - x}\sum_{j = 1}^{\infty} j^4 x^j + \dfrac{4x}{(1 - x)^2}\sum_{j = 1}^{\infty} j^3 x^j + \dfrac{6(x^2 + x)}{(1 - x)^3}\sum_{j = 1}^{\infty} j^2 x^j + 4\dfrac{x^3 + 4x^2 + x}{(1 - x)^4}\sum_{j = 1}^{\infty} j x^j

+ x 4 + 11 x 3 + 11 x 2 + x ( 1 x ) 5 j = 1 x j = + \dfrac{x^4 + 11x^3 + 11x^2 + x}{(1 - x)^5}\sum_{j = 1}^{\infty} x^j =

1 1 x ( x 4 + 11 x 3 + 11 x 2 + x ( 1 x ) 5 ) \dfrac{1}{1 - x}(\dfrac{x^4 + 11x^3 + 11x^2 + x}{(1 - x)^5}) + 4 x ( 1 x ) 2 ( x 3 + 4 x 2 + x ) ( 1 x ) 4 \dfrac{4x}{(1 - x)^2}(\dfrac{x^3 + 4x^2 + x)}{(1 - x)^4} + 6 ( x 2 + x ) ( 1 x ) 3 ( x 2 + x ( 1 x ) 3 ) + 4 ( x 3 + 4 x 2 + x ) ( 1 x ) 4 ( x ( 1 x ) 2 ) + ( x 4 + 11 x 3 + 11 x 2 + x ( 1 x ) 5 ) ( x 1 x ) \dfrac{6(x^2 + x)}{(1 - x)^3}(\dfrac{x^2 + x}{(1 - x)^3}) + \dfrac{4(x^3 + 4x^2 + x)}{(1 - x)^4}(\dfrac{x}{(1 - x)^2}) + (\dfrac{x^4 + 11x^3 + 11x^2 + x}{(1 - x)^5})(\dfrac{x}{1 - x})

= x 5 + 26 x 4 + 66 x 3 + 26 x 2 + x ( 1 x ) 6 = \dfrac{x^5 + 26x^4 + 66x^3 + 26x^2 + x}{(1 - x)^6}

g ( x ) = n = 1 ( 1 ) n + 1 n 5 x n = n = 1 n 5 ( x ) n = \implies \boxed{g(x) = \sum_{n = 1}^{\infty} (-1)^{n + 1} n^5 x^n = - \sum_{n = 1}^{\infty} n^5 (-x)^n = }

( x 5 + 26 x 4 66 x 3 + 26 x 2 x ( 1 + x ) 6 ) = x 5 26 x 4 + 66 x 3 26 x 2 + x ( 1 + x ) 6 \boxed{-(\dfrac{-x^5 + 26x^4 - 66x^3 + 26x^2 - x}{(1 + x)^6}) = \dfrac{x^5 - 26x^4 + 66x^3 - 26x^2 + x}{(1 + x)^6}}

n = 1 n 6 x n = j = 1 n = j n 5 x n = \sum_{n = 1}^{\infty} n^6 x^n = \sum_{j = 1}^{\infty} \sum_{n = j}^{\infty} n^5 x^{n} = 1 1 x j = 1 j 5 x j + 5 x ( 1 x ) 2 j = 1 j 4 x j + 10 ( x 2 + x ) ( 1 x ) 3 j = 1 j 3 x j + 10 ( x 3 + 4 x 2 + x ) ( 1 x ) 4 j = 1 j 2 x j \dfrac{1}{1 - x}\sum_{j = 1}^{\infty} j^5 x^j + \dfrac{5x}{(1 - x)^2}\sum_{j = 1}^{\infty} j^4 x^j + \dfrac{10(x^2 + x)}{(1 - x)^3}\sum_{j = 1}^{\infty} j^3 x^j + \dfrac{10(x^3 + 4x^2 + x)}{(1 - x)^4}\sum_{j = 1}^{\infty} j^2 x^j

+ 5 ( x 4 + 11 x 3 + 11 x 2 + x ) ( 1 x ) 5 j = 1 j x j + + \dfrac{5(x^4 + 11x^3 + 11x^2 + x)}{(1 - x)^5}\sum_{j = 1}^{\infty} j x^j + ( x 5 + 26 x 4 + 66 x 3 + 26 x 2 + x ( 1 x ) 6 ) j = 1 x j = (\dfrac{x^5 + 26x^4 + 66x^3 + 26x^2 + x}{(1 - x)^6})\sum_{j = 1}^{\infty} x^j =

1 1 x ( x 5 + 26 x 4 + 66 x 3 + 26 x 2 + x ( 1 x ) 6 ) + \dfrac{1}{1 - x}(\dfrac{x^5 + 26x^4 + 66x^3 + 26x^2 + x}{(1 - x)^6}) + 5 x ( 1 x ) 2 ( x 4 + 11 x 3 + 11 x 2 + x ( 1 x ) 5 ) + 10 ( x 2 + x ) ( 1 x ) 3 ( x 3 + 4 x 2 + x ( 1 x ) 4 ) \dfrac{5x}{(1 - x)^2}(\dfrac{x^4 + 11x^3 + 11x^2 + x}{(1 - x)^5}) + \dfrac{10(x^2 + x)}{(1 - x)^3}(\dfrac{x^3 + 4x^2 + x}{(1 - x)^4})

+ 10 ( x 3 + 4 x 2 + x ) ( 1 x ) 4 ( x 2 + x ( 1 x ) 3 ) + 5 ( x 4 + 11 x 3 + 11 x 2 + x ) ( 1 x ) 5 ( x ( 1 x ) 2 ) + ( x 5 + 26 x 4 + 66 x 3 + 26 x 2 + x ( 1 x ) 6 ) ( x 1 x ) + \dfrac{10(x^3 + 4x^2 + x)}{(1 - x)^4}(\dfrac{x^2 + x}{(1 - x)^3}) + \dfrac{5(x^4 + 11x^3 + 11x^2 + x)}{(1 - x)^5}(\dfrac{x}{(1 - x)^2}) + (\dfrac{x^5 + 26x^4 + 66x^3 + 26x^2 + x}{(1 - x)^6})(\dfrac{x}{1 - x}) .

= x 6 + 57 x 5 + 302 x 4 + 302 x 3 + 57 x 2 + x ( 1 x ) 7 = \dfrac{x^6 + 57x^5 + 302x^4 + 302x^3 + 57x^2 + x}{(1 - x)^7}

f ( x ) = n = 1 ( 1 ) n + 1 n 5 x n = n = 1 n 6 ( x ) n = \implies \boxed{f(x) = \sum_{n = 1}^{\infty} (-1)^{n + 1} n^5 x^n = - \sum_{n = 1}^{\infty} n^6 (-x)^n = }

( x 6 57 x 5 + 302 x 4 302 x 3 + 57 x 2 x ( 1 + x ) 7 ) = x 6 + 57 x 5 302 x 4 + 302 x 3 57 x 2 + x ( 1 + x ) 7 \boxed{-(\dfrac{x^6 - 57x^5 + 302x^4 - 302x^3 + 57x^2 - x}{(1 + x)^7}) = \dfrac{-x^6 + 57x^5 - 302x^4 + 302x^3 - 57x^2 + x}{(1 + x)^7}}

Let u = 1 + x d u = d x u = 1 + x \implies du = dx \implies

a 1 0 g ( x ) d x = 1 a u 5 31 u 4 + 180 u 3 390 u 2 + 360 u 120 u 6 d u = \int_{a - 1}^{0} g(x) dx = -\int_{1}^{a} \dfrac{u^5 - 31u^4 + 180u^3 - 390u^2 + 360u - 120}{u^6} du =

1 a 1 u 31 u 2 + 180 u 3 390 u 4 + 360 u 5 120 u 6 d u = -\int_{1}^{a} \dfrac{1}{u} - 31u^{-2} + 180u^{-3} - 390u^{-4} + 360u^{-5} - 120u^{-6} du =

( ln ( u ) + 31 u 90 u 2 + 130 u 3 90 u 4 + 24 u 5 ) 1 a = 5 a 5 31 a 4 + 90 a 3 130 a 2 + 90 a 24 a 5 ln ( a ) -(\ln(u) + \dfrac{31}{u} - \dfrac{90}{u^2} + \dfrac{130}{u^3} - \dfrac{90}{u^4} + \dfrac{24}{u^5})|_{1}^{a} = \dfrac{5a^5 - 31a^4 + 90a^3 - 130a^2 + 90a - 24}{a^5} - \ln(a)

and,

a 1 0 f ( x ) d x = a 1 0 x 6 + 57 x 5 302 x 4 + 302 x 3 57 x 2 + x ( 1 + x ) 7 d x = \int_{a - 1}^{0} f(x) dx = \int_{a - 1}^{0} -\dfrac{-x^6 + 57x^5 - 302x^4 + 302x^3 - 57x^2 + x}{(1 + x)^7} dx = 1 a u 6 63 u 5 + 602 u 4 2100 u 3 + 3360 u 2 2520 u + 720 u 7 d u = \int_{1}^{a} \dfrac{u^6 - 63u^5 + 602u^4 - 2100u^3 + 3360u^2 - 2520u + 720}{u^7}du = 1 a 1 u 63 u 2 + 602 u 3 2100 u 4 + 3360 u 5 2520 u 6 + 720 u 7 d u = \int_{1}^{a} \dfrac{1}{u} - 63u^{-2} + 602u^{-3} -2100u^{-4} + 3360u^{-5} - 2520u^{-6} + 720u^{-7} du = ( ln ( u ) + 63 u 301 u 2 + 700 u 3 840 u 4 + 504 u 5 120 u 6 ) 1 a = (\ln(u) + \dfrac{63}{u} - \dfrac{301}{u^2} + \dfrac{700}{u^3} - \dfrac{840}{u^4} + \dfrac{504}{u^5} - \dfrac{120}{u^6})|_{1}^{a} = ln ( a ) + 63 a 301 a 2 + 700 a 3 840 a 4 + 504 a 5 120 a 6 6 = \ln(a) + \dfrac{63}{a} - \dfrac{301}{a^2} + \dfrac{700}{a^3} - \dfrac{840}{a^4} + \dfrac{504}{a^5} - \dfrac{120}{a^6} - 6 = ( 6 a 6 63 a 5 + 301 a 4 700 a 3 + 840 a 2 504 a + 120 a 6 ln ( a ) ) -(\dfrac{6a^6 - 63a^5 + 301a^4 - 700a^3 + 840a^2 - 504a + 120}{a^6} - \ln(a))

\implies

a 1 0 g ( x ) f ( x ) d x = 11 a 6 94 a 5 + 391 a 4 830 a 3 + 930 a 2 528 a + 120 a 6 2 ln ( a ) = \int_{a - 1}^{0} g(x) - f(x) dx = \dfrac{11a^6 - 94a^5 + 391a^4 - 830a^3 + 930a^2 - 528a + 120}{a^6} - 2\ln(a) = 11 a 6 94 a 5 9609 a 4 + 3170 a 3 + 330 a 2 488 a + 119 a 6 2 ln ( a ) \dfrac{11a^6 - 94a^5 - 9609a^4 + 3170a^3 + 330a^2 - 488a + 119}{a^6} - 2\ln(a)

10000 a 4 4000 a 3 + 600 a 2 40 a + 1 a 6 = 0 \implies \dfrac{10000a^4 - 4000a^3 + 600a^2 - 40a + 1}{a^6} = 0 \implies ( 10 a 1 ) 4 = 0 a = 1 10 9 10 0 g ( x ) f ( x ) d x = 75708175.605170 (10a - 1)^4 = 0 \implies a = \boxed{\dfrac{1}{10}} \implies \int_{\frac{-9}{10}}^{0} g(x) - f(x) dx = \boxed{75708175.605170} to six decimal places.

The area could have been obtained using f ( x ) = n = 1 n 6 x n f^{*}(x) = \sum_{n = 1}^{\infty} n^6 x^n and g ( x ) = n = 1 n 5 x n g^{*}(x) = \sum_{n = 1}^{\infty} n^5 x^n on [ 0 , 1 a ] [0,1 - a] . Note the symmetry about the origin above.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...