Alternating Sums

Calculus Level 4

For x > 1 x > 1 , show that if S 0 ( x ) = n = 1 1 x n 1 \displaystyle S_{0}(x) = \sum_{n = 1}^{\infty} \dfrac{1}{x^{n - 1}} and for ( 1 l k ) (1 \leq l \leq k) , S l ( x ) = n = 1 n l x n , \displaystyle S_{l}(x) = \sum_{n = 1}^{\infty} \dfrac{n^l}{x^n}, then S k + 1 ( x ) = n = 1 n k + 1 x n = l = 0 k 1 ( k l ) S l ( x ) S k l ( x ) + 1 x S k ( x ) S 0 ( x ) S_{k + 1}(x) = \sum_{n = 1}^{\infty} \dfrac{n^{k + 1}}{x^n} = \sum_{l = 0}^{k - 1} \binom kl S_{l}(x) S_{k - l}(x) + \dfrac{1}{x} S_{k}(x) S_{0}(x)

Using the above:

If 2 3 n = 1 ( 1 ) n + 1 n 4 x n d x = ln ( c 2 d ) a 2 b c 7 d 2 \int_{2}^{3} \sum_{n = 1}^{\infty} (-1)^{n + 1} \dfrac{n^4}{x^n} dx = \ln(\dfrac{c^2}{d}) - \dfrac{a^2 * b}{c^7 * d^2} , where a , b , c , d a,b,c,d are distinct primes, find a + b + c + d a + b + c + d .


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rocco Dalto
Jan 10, 2018

Let x > 1 x > 1 .

To Show: If S 0 ( x ) = n = 1 1 x n 1 S_{0}(x) = \sum_{n = 1}^{\infty} \dfrac{1}{x^{n - 1}} and for ( 1 l k ) (1 \leq l \leq k) S l ( x ) = n = 1 n l x n , S_{l}(x) = \sum_{n = 1}^{\infty} \dfrac{n^l}{x^n}, then

S k + 1 ( x ) = n = 1 n k + 1 x n = S_{k + 1}(x) = \sum_{n = 1}^{\infty} \dfrac{n^{k + 1}}{x^n} = ( l = 0 k 1 ( k l ) S l ( x ) S k l ( x ) ) + 1 x S k ( x ) S 0 ( x ) . (\sum_{l = 0}^{k - 1} \left(\begin{array}{cc} k \\ l \\ \ \end{array}\right) S_{l}(x) S_{k - l}(x)) + \dfrac{1}{x} S_{k}(x) S_{0}(x).

Let x > 1 x > 1 .

S k + 1 = n = 1 n k + 1 x n = j = 1 n = j n k x n = j = 1 n = 0 ( j + n ) k x j + n = S_{k + 1} = \sum_{n = 1}^{\infty} \dfrac{n^{k + 1}}{x^n} = \sum_{j = 1}^{\infty} \sum_{n = j}^{\infty} \dfrac{n^k}{x^n} = \sum_{j = 1}^{\infty} \sum_{n = 0}^{\infty} \dfrac{(j + n)^k}{x^{j + n}} =

j = 1 ( j k x j n = 1 1 x n 1 + ( k 1 ) j k 1 x j n = 1 n x n + ( k 2 ) j k 2 x j n = 1 n 2 x n + . . . + \sum_{j = 1}^{\infty} (\dfrac{j^k}{x^{j}} \sum_{n = 1}^{\infty} \dfrac{1}{x^{n - 1}} + \left(\begin{array}{cc} k \\ 1 \\ \ \end{array}\right) \dfrac{j^{k - 1}}{x^j} \sum_{n = 1}^{\infty} \dfrac{n}{x^n} + \left(\begin{array}{cc} k \\ 2 \\ \ \end{array}\right) \dfrac{j^{k - 2}}{x^j} \sum_{n = 1}^{\infty} \dfrac{n^2}{x^n} + ... + ( k l ) j k l x j n = 1 n l x n + . . . + 1 x j n = 1 n k x n ) \left(\begin{array}{cc} k \\ l \\ \ \end{array}\right) \dfrac{j^{k - l}}{x^j} \sum_{n = 1}^{\infty} \dfrac{n^l}{x^n} + ... + \dfrac{1}{x^j} \sum_{n = 1}^{\infty} \dfrac{n^k}{x^n} ) .

Letting S 0 ( x ) = n = 1 1 x n 1 S_{0}(x) = \sum_{n = 1}^{\infty} \dfrac{1}{x^{n - 1}} and for ( 1 l k ) (1 \leq l \leq k) S l ( x ) = n = 1 n l x n S_{l}(x) = \sum_{n = 1}^{\infty} \dfrac{n^l}{x^n} \implies

S k + 1 = S 0 ( x ) S k ( x ) + ( k 1 ) S 1 ( x ) S k 1 ( x ) + ( k 2 ) S 2 ( x ) S k 2 ( x ) + . . . + ( k l ) S l ( x ) S k l ( x ) = . . . + S_{k + 1} = S_{0}( x) S_{k}(x) + \left(\begin{array}{cc} k \\ 1 \\ \ \end{array}\right) S_{1}(x) S_{k - 1}(x) + \left(\begin{array}{cc} k \\ 2 \\ \ \end{array}\right) S_{2}(x) S_{k - 2}(x) + ... + \left(\begin{array}{cc} k \\ l \\ \ \end{array}\right) S_{l}(x) S_{k - l}(x) = ... +

1 x S k ( x ) S 0 ( x ) = n = 1 n k + 1 x n = \dfrac{1}{x} S_{k}(x) S_{0}(x) = \sum_{n = 1}^{\infty} \dfrac{n^{k + 1}}{x^n} = ( l = 0 k 1 ( k l ) S l ( x ) S k l ( x ) ) + 1 x S k ( x ) S 0 ( x ) (\sum_{l = 0}^{k - 1} \left(\begin{array}{cc} k \\ l \\ \ \end{array}\right) S_{l}(x) S_{k - l}(x)) + \dfrac{1}{x} S_{k}(x) S_{0}(x) .

From the summation it should be clear that S 1 ( x ) = n = 1 n x n 1 = 1 x ( S 0 ( x ) ) 2 S_{1}(x) = \sum_{n = 1}^{\infty} \dfrac{n}{x^{n - 1}} = \dfrac{1}{x} (S_{0}(x))^2 .

Using the above:

Let x > 1 x > 1 .

Clearly the geometric series S 0 = n = 1 1 x n 1 = x x 1 S_{0} = \sum_{n = 1}^{\infty} \dfrac{1}{x^{n - 1}}= \dfrac{x}{x - 1}

For k = 0 : S 1 ( x ) = n = 1 n x n 1 = 1 x ( S 0 ( x ) ) 2 = 1 x ( x x 1 ) 2 = x ( x 1 ) 2 k = 0: S_{1}(x) = \sum_{n = 1}^{\infty} \dfrac{n}{x^{n - 1}} = \dfrac{1}{x} (S_{0}(x))^2 = \dfrac{1}{x}(\dfrac{x}{x - 1})^2 = \dfrac{x}{(x - 1)^2} .

For k = 1 : S 2 ( x ) = n = 1 n 2 x n = S 0 ( x ) S 1 ( x ) + 1 x S 1 ( x ) S 0 ( x ) = x 2 + x ( x 1 ) 3 k = 1: S_{2}(x) = \sum_{n = 1}^{\infty} \dfrac{n^2}{x^{n}} = S_{0}(x) S_{1}(x) +\dfrac{1}{x} S_{1}(x) S_{0}(x) = \dfrac{x^2 + x}{(x - 1)^3}

For k = 2 : S 3 ( x ) = n = 1 n 3 x n = S 0 ( x ) S 2 ( x ) + 2 ( S 1 ( x ) ) 2 + 1 x S 1 ( x ) S 0 ( x ) = x 3 + 4 x 2 + x ( x 1 ) 4 k = 2: S_{3}(x) = \sum_{n = 1}^{\infty} \dfrac{n^3}{x^{n}} = S_{0}(x) S_{2}(x) + 2 (S_{1}(x))^2 + \dfrac{1}{x} S_{1}(x) S_{0}(x) = \dfrac{x^3 + 4x^2 + x}{(x - 1)^4}

For k = 3 : S 4 ( x ) = n = 1 n 4 x n = S 0 ( x ) S 3 ( x ) + 3 S 1 ( x ) S 2 ( x ) + 3 S 2 ( x ) S 1 ( x ) + 1 x S 3 ( x ) S 0 ( x ) = x 4 + 11 x 3 + 11 x 2 + x ( x 1 ) 5 k = 3: S_{4}(x) = \sum_{n = 1}^{\infty} \dfrac{n^4}{x^{n}} = S_{0}(x) S_{3}(x) + 3 S_{1}(x) S_{2}(x) + 3 S_{2}(x) S_{1}(x) + \dfrac{1}{x} S_{3}(x) S_{0}(x) = \dfrac{x^4 + 11x^3 + 11x^2 + x}{(x - 1)^5}

S 4 ( x ) = n = 1 ( 1 ) n + 1 n 4 x n = 1 n = 1 n 4 ( x ) n = ( x 4 11 x 3 + 11 x 2 x ( x + 1 ) 5 ) = x 4 11 x 3 + 11 x 2 x ( x + 1 ) 5 \implies S^*_{4}(x) = \sum_{n = 1}^{\infty} (-1)^{n + 1} \dfrac{n^4}{x^n} = -1 * \sum_{n = 1}^{\infty} \dfrac{n^4}{(-x)^n} = -(\dfrac{x^4 - 11x^3 + 11x^2 - x}{-(x + 1)^5}) = \dfrac{x^4 - 11x^3 + 11x^2 - x}{(x + 1)^5}

Let u = x + 1 d u = d x 2 3 S 4 ( x ) d x = 3 4 u 4 15 u 3 + 50 u 2 60 u + 24 u 5 d u = u = x + 1 \implies du = dx \implies \int_{2}^{3} S^*_{4}(x) dx = \int_{3}^{4} \dfrac{u^4 - 15u^3 + 50u^2 - 60u + 24}{u^5} du = 3 4 1 u 15 u 2 + 50 u 3 60 u 4 + 24 u 5 d u = ( ln ( u ) + 15 u 25 u 2 + 20 u 3 6 u 4 ) 3 4 = \int_{3}^{4} \dfrac{1}{u} - 15u^{-2} + 50u^{-3} - 60u^{-4} + 24u^{-5} du = (\ln(u) + \dfrac{15}{u} - \dfrac{25}{u^2} + \dfrac{20}{u^3} - \dfrac{6}{u^4})|_{3}^{4} = ln ( 4 3 ) + 15 4 15 3 + 25 9 25 16 + 20 64 20 27 + 6 81 6 256 = ln ( 4 3 ) 8550 20736 = \ln(\dfrac{4}{3}) + \dfrac{15}{4} - \dfrac{15}{3} + \dfrac{25}{9} - \dfrac{25}{16} +\dfrac{20}{64} - \dfrac{20}{27} + \dfrac{6}{81} - \dfrac{6}{256} = \ln(\dfrac{4}{3}) - \dfrac{8550}{20736} = ln ( 4 3 ) 2 3 2 5 2 19 2 8 3 4 = ln ( 2 2 3 ) 5 2 19 2 7 3 2 = ln ( c 2 d ) a 2 b c 7 d 2 a + b + c + d = 29 \ln(\dfrac{4}{3}) - \dfrac{2 * 3^2 * 5^2 * 19}{2^8 * 3^4} = \ln(\dfrac{2^2}{3}) - \dfrac{5^2 * 19}{2^7 * 3^2} = \ln(\dfrac{c^2}{d}) - \dfrac{a^2 * b}{c^7 * d^2} \implies a + b + c + d = \boxed{29}

Mark Hennings
Jan 13, 2018

It is a little easier this way, perhaps. If we define S k ( x ) = n = 1 ( 1 ) n + 1 n k x n x > 1 S_k(x) \; = \; \sum_{n=1}^\infty \frac{(-1)^{n+1} n^k}{x^n} \hspace{2cm} x > 1 (note the slightly different definition for S 0 ( x ) S_0(x) ) then x S k ( x ) = S k + 1 ( x ) xS_k'(x) \; = \; -S_{k+1}(x) and so, if we define I k = 2 3 S k ( x ) d x I_k \; = \; \int_2^3 S_k(x)\,dx then integration by parts gives I k I k + 1 = [ x S k ( x ) ] 2 3 = 3 S k ( 3 ) 2 S k ( 2 ) I_k - I_{k+1} \; = \; \Big[x S_k(x)\Big]_2^3 \; = \; 3S_k(3) - 2S_k(2) and hence I 0 I 4 = 3 F ( 3 ) 2 F ( 2 ) I_0 - I_4 \; = \; 3F(3) - 2F(2) where F ( x ) = S 0 ( x ) + S 1 ( x ) + S 2 ( x ) + S 3 ( x ) F(x) \; = \; S_0(x) + S_1(x) + S_2(x) + S_3(x) Summing the GP that is S 0 ( x ) S_0(x) , and differentiating a few times, we obtain S 0 ( x ) = 1 x + 1 S 1 ( x ) = x ( x + 1 ) 2 S 2 ( x ) = x ( x 1 ) ( x + 1 ) 3 S 3 ( x ) = x ( x 2 4 x + 1 ) ( x + 1 ) 4 F ( x ) = ( 4 x + 1 ) ( x 2 + 1 ) ( x + 1 ) 4 \begin{aligned} S_0(x) & = \; \frac{1}{x+1} \\ S_1(x) & = \; \frac{x}{(x+1)^2} \\ S_2(x) & = \; \frac{x(x-1)}{(x+1)^3} \\ S_3(x) & = \; \frac{x(x^2 - 4x + 1)}{(x+1)^4} \\ F(x) & = \; \frac{(4x+1)(x^2+1)}{(x+1)^4} \end{aligned} for x > 1 x > 1 , and hence I 4 = I 0 3 F ( 3 ) + 2 F ( 2 ) = ln 4 3 475 1152 = ln ( 2 2 3 ) 5 2 × 19 2 7 × 3 2 I_4 \; = \; I_0 - 3F(3) + 2F(2) \; = \; \ln\tfrac43 - \tfrac{475}{1152} \; = \; \ln\big(\tfrac{2^2}{3}\big) - \tfrac{5^2 \times 19}{2^7 \times 3^2} making the answer 5 + 19 + 2 + 3 = 29 5 + 19 + 2 + 3 = \boxed{29} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...