For x > 1 , show that if S 0 ( x ) = n = 1 ∑ ∞ x n − 1 1 and for ( 1 ≤ l ≤ k ) , S l ( x ) = n = 1 ∑ ∞ x n n l , then S k + 1 ( x ) = n = 1 ∑ ∞ x n n k + 1 = l = 0 ∑ k − 1 ( l k ) S l ( x ) S k − l ( x ) + x 1 S k ( x ) S 0 ( x )
Using the above:
If ∫ 2 3 ∑ n = 1 ∞ ( − 1 ) n + 1 x n n 4 d x = ln ( d c 2 ) − c 7 ∗ d 2 a 2 ∗ b , where a , b , c , d are distinct primes, find a + b + c + d .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
It is a little easier this way, perhaps. If we define S k ( x ) = n = 1 ∑ ∞ x n ( − 1 ) n + 1 n k x > 1 (note the slightly different definition for S 0 ( x ) ) then x S k ′ ( x ) = − S k + 1 ( x ) and so, if we define I k = ∫ 2 3 S k ( x ) d x then integration by parts gives I k − I k + 1 = [ x S k ( x ) ] 2 3 = 3 S k ( 3 ) − 2 S k ( 2 ) and hence I 0 − I 4 = 3 F ( 3 ) − 2 F ( 2 ) where F ( x ) = S 0 ( x ) + S 1 ( x ) + S 2 ( x ) + S 3 ( x ) Summing the GP that is S 0 ( x ) , and differentiating a few times, we obtain S 0 ( x ) S 1 ( x ) S 2 ( x ) S 3 ( x ) F ( x ) = x + 1 1 = ( x + 1 ) 2 x = ( x + 1 ) 3 x ( x − 1 ) = ( x + 1 ) 4 x ( x 2 − 4 x + 1 ) = ( x + 1 ) 4 ( 4 x + 1 ) ( x 2 + 1 ) for x > 1 , and hence I 4 = I 0 − 3 F ( 3 ) + 2 F ( 2 ) = ln 3 4 − 1 1 5 2 4 7 5 = ln ( 3 2 2 ) − 2 7 × 3 2 5 2 × 1 9 making the answer 5 + 1 9 + 2 + 3 = 2 9 .
Problem Loading...
Note Loading...
Set Loading...
Let x > 1 .
To Show: If S 0 ( x ) = ∑ n = 1 ∞ x n − 1 1 and for ( 1 ≤ l ≤ k ) S l ( x ) = ∑ n = 1 ∞ x n n l , then
S k + 1 ( x ) = ∑ n = 1 ∞ x n n k + 1 = ( ∑ l = 0 k − 1 ⎝ ⎛ k l ⎠ ⎞ S l ( x ) S k − l ( x ) ) + x 1 S k ( x ) S 0 ( x ) .
Let x > 1 .
S k + 1 = ∑ n = 1 ∞ x n n k + 1 = ∑ j = 1 ∞ ∑ n = j ∞ x n n k = ∑ j = 1 ∞ ∑ n = 0 ∞ x j + n ( j + n ) k =
∑ j = 1 ∞ ( x j j k ∑ n = 1 ∞ x n − 1 1 + ⎝ ⎛ k 1 ⎠ ⎞ x j j k − 1 ∑ n = 1 ∞ x n n + ⎝ ⎛ k 2 ⎠ ⎞ x j j k − 2 ∑ n = 1 ∞ x n n 2 + . . . + ⎝ ⎛ k l ⎠ ⎞ x j j k − l ∑ n = 1 ∞ x n n l + . . . + x j 1 ∑ n = 1 ∞ x n n k ) .
Letting S 0 ( x ) = ∑ n = 1 ∞ x n − 1 1 and for ( 1 ≤ l ≤ k ) S l ( x ) = ∑ n = 1 ∞ x n n l ⟹
S k + 1 = S 0 ( x ) S k ( x ) + ⎝ ⎛ k 1 ⎠ ⎞ S 1 ( x ) S k − 1 ( x ) + ⎝ ⎛ k 2 ⎠ ⎞ S 2 ( x ) S k − 2 ( x ) + . . . + ⎝ ⎛ k l ⎠ ⎞ S l ( x ) S k − l ( x ) = . . . +
x 1 S k ( x ) S 0 ( x ) = ∑ n = 1 ∞ x n n k + 1 = ( ∑ l = 0 k − 1 ⎝ ⎛ k l ⎠ ⎞ S l ( x ) S k − l ( x ) ) + x 1 S k ( x ) S 0 ( x ) .
From the summation it should be clear that S 1 ( x ) = ∑ n = 1 ∞ x n − 1 n = x 1 ( S 0 ( x ) ) 2 .
Using the above:
Let x > 1 .
Clearly the geometric series S 0 = ∑ n = 1 ∞ x n − 1 1 = x − 1 x
For k = 0 : S 1 ( x ) = ∑ n = 1 ∞ x n − 1 n = x 1 ( S 0 ( x ) ) 2 = x 1 ( x − 1 x ) 2 = ( x − 1 ) 2 x .
For k = 1 : S 2 ( x ) = ∑ n = 1 ∞ x n n 2 = S 0 ( x ) S 1 ( x ) + x 1 S 1 ( x ) S 0 ( x ) = ( x − 1 ) 3 x 2 + x
For k = 2 : S 3 ( x ) = ∑ n = 1 ∞ x n n 3 = S 0 ( x ) S 2 ( x ) + 2 ( S 1 ( x ) ) 2 + x 1 S 1 ( x ) S 0 ( x ) = ( x − 1 ) 4 x 3 + 4 x 2 + x
For k = 3 : S 4 ( x ) = ∑ n = 1 ∞ x n n 4 = S 0 ( x ) S 3 ( x ) + 3 S 1 ( x ) S 2 ( x ) + 3 S 2 ( x ) S 1 ( x ) + x 1 S 3 ( x ) S 0 ( x ) = ( x − 1 ) 5 x 4 + 1 1 x 3 + 1 1 x 2 + x
⟹ S 4 ∗ ( x ) = ∑ n = 1 ∞ ( − 1 ) n + 1 x n n 4 = − 1 ∗ ∑ n = 1 ∞ ( − x ) n n 4 = − ( − ( x + 1 ) 5 x 4 − 1 1 x 3 + 1 1 x 2 − x ) = ( x + 1 ) 5 x 4 − 1 1 x 3 + 1 1 x 2 − x
Let u = x + 1 ⟹ d u = d x ⟹ ∫ 2 3 S 4 ∗ ( x ) d x = ∫ 3 4 u 5 u 4 − 1 5 u 3 + 5 0 u 2 − 6 0 u + 2 4 d u = ∫ 3 4 u 1 − 1 5 u − 2 + 5 0 u − 3 − 6 0 u − 4 + 2 4 u − 5 d u = ( ln ( u ) + u 1 5 − u 2 2 5 + u 3 2 0 − u 4 6 ) ∣ 3 4 = ln ( 3 4 ) + 4 1 5 − 3 1 5 + 9 2 5 − 1 6 2 5 + 6 4 2 0 − 2 7 2 0 + 8 1 6 − 2 5 6 6 = ln ( 3 4 ) − 2 0 7 3 6 8 5 5 0 = ln ( 3 4 ) − 2 8 ∗ 3 4 2 ∗ 3 2 ∗ 5 2 ∗ 1 9 = ln ( 3 2 2 ) − 2 7 ∗ 3 2 5 2 ∗ 1 9 = ln ( d c 2 ) − c 7 ∗ d 2 a 2 ∗ b ⟹ a + b + c + d = 2 9