Always the complementary ones!

Geometry Level 3

In a right Δ A B C \Delta ABC , acute angles A A and B B satisfy

tan A + tan B + tan 2 A + tan 2 B + tan 3 A + tan 3 B = 70 \tan { A+\tan { B+\tan ^{ 2 }{ A+\tan ^{ 2 }{ B+\tan ^{ 3 }{ A+\tan ^{ 3 }{ B=70 } } } } } }

Then find angles A A and B B in radians.

7 π 24 , 5 π 24 \frac { 7\pi }{ 24 } ,\frac { 5\pi }{ 24 } π 4 , π 4 \frac { \pi }{ 4 } ,\frac { \pi }{ 4 } π 6 , π 3 \frac { \pi }{ 6 } ,\frac { \pi }{ 3 } 5 π 12 , π 12 \frac { 5\pi }{ 12 } ,\frac { \pi }{ 12 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 11, 2016

We note that A + B = π 2 A+B=\dfrac \pi 2 , tan B = tan ( π 2 A ) = cot A = 1 tan A \implies \tan B = \tan (\frac \pi 2 - A) = \cot A = \dfrac 1{\tan A} . Then we have:

tan A + tan B + tan 2 A + tan 2 B + tan 3 A + tan 3 B = 70 tan A + 1 tan A + tan 2 A + 1 tan 2 A + tan 3 A + 1 tan 3 A = 70 Let x = tan A x + 1 x + x 2 + 1 x 2 + x 3 + 1 x 3 = 70 x + 1 x + x 2 + 2 + 1 x 2 2 + x 3 + 3 x + 3 x + 1 x 3 3 x + 3 x = 70 ( x + 1 x ) + ( x + 1 x ) 2 2 + ( x + 1 x ) 3 3 ( x + 1 x ) = 70 ( x + 1 x ) 3 + ( x + 1 x ) 2 2 ( x + 1 x ) 72 = 0 x + 1 x = 4 x 2 4 x + 1 = 0 x = tan A = 2 ± 3 A , B = 5 π 12 , π 12 \begin{aligned} \tan A + \tan B + \tan^2 A + \tan^2 B + \tan^3 A + \tan^3 B & = 70 \\ \tan A + \frac 1{\tan A} + \tan^2 A + \frac 1{\tan^2 A} + \tan^3 A + \frac 1{\tan^3 A} & = 70 & \small \color{#3D99F6}{\text{Let }x = \tan A} \\ x + \frac 1x + x^2 + \frac 1{x^2} + x^3 + \frac 1{x^3} & = 70 \\ x + \frac 1x + x^2 + \color{#3D99F6}{2} + \frac 1{x^2} - \color{#D61F06}{2} + x^3 + \color{#3D99F6}{3x + \frac 3x} + \frac 1{x^3} - \color{#D61F06}{3x + \frac 3x} & = 70 \\ \left(x + \frac 1x\right) + \left(x + \frac 1x\right)^2 - \color{#D61F06}{2} + \left(x + \frac 1x\right)^3 - \color{#D61F06}{3\left(x + \frac 1x\right)} & = 70 \\ \left(x + \frac 1x\right)^3 + \left(x + \frac 1x\right)^2 - 2\left(x + \frac 1x\right) - 72 & = 0 \\ \implies x + \frac 1x & = 4 \\ x^2 - 4x + 1 & = 0 \\ x = \tan A & = 2 \pm \sqrt 3 \\ \implies A, B & = \boxed{\dfrac {5 \pi}{12}, \ \dfrac {\pi}{12}} \end{aligned}

Tapas Mazumdar
Aug 10, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...