AM Circles

The value of x x is the mean of the numbers in the white circles. The values of y y is the mean of numbers in the blue circles.

Find x y x-y .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Mean, in this case, is the sum of the circles by the number of circles. Therefore x y = ( 5 + 49 + 16 + y ) ( 3 + 24 + 23 + x ) 4 x-y = \frac{(5+49+16+y)-(3+24+23+x)}{4} 4 ( x y ) = ( y x ) + 20 4(x-y) = (y-x) + 20 4 ( x y ) = ( x y ) + 20 4(x-y) = -(x-y) + 20 5 ( x y ) = 20 5(x-y) = 20 ( x y ) = 4 (x-y) = 4

Moderator note:

Ingenious method! Fantastic.

^simplest method

Arvind Suresh - 6 years, 1 month ago

Thats how I did it in my head

Scott Bartholomew - 1 year, 11 months ago
Dann Nielsen Dy
May 4, 2015

x = (5 + 49 + y + 16)/4

y = (3 + x + 24 + 23)/4

4x = 5 + 49 + y + 16

4y = 3 + x + 24 + 23

4x - 4y = 5 + 49 + y + 16 - 3 - x - 24 - 23

5x - 5y = 20

x - y = 4

Noel Lo
May 3, 2015

x = 49 + 5 + 16 + y 4 = 70 + y 4 x = \frac{49+5+16+y}{4} = \frac{70+y}{4} , y = 3 + 24 + 23 + x 4 = 50 + x 4 y= \frac{3+24+23+x}{4} = \frac{50+x}{4}

x = 70 + 50 + x 4 4 x= \frac{70+\frac{50+x}{4}}{4}

4 x = 70 + 50 + x 4 4x = 70 + \frac{50+x}{4}

16 x = 280 + 50 + x 16x = 280 + 50+x

15 x = 330 15x = 330

x = 330 15 = 22 x= \frac{330}{15} = 22

y = 50 + 22 4 = 72 4 = 18 y = \frac{50+22}{4} = \frac{72}{4} =18

x y = 22 18 = 4 x-y = 22-18 = \boxed{4}

Chacon Alexandre
Nov 20, 2015

4x = 70 + y

4y = 50 + x

4x - y = 70 (I) -x + 4y= 50 (II)

4×(I) + (II) = 15x =330

x = 22

4×(22) - y = 70; (I)

y = 18

x - y = 4

Joseph Harris
Nov 20, 2015

Begin by setting up a system of equations
x = 49 + 16 + 5 + y 4 x=\frac{49+16+5+y}{4}
x = 70 + y 4 x=\frac{70+y}{4}
4 x y = 70 4x-y=70
y = 24 + 23 + 3 + x 4 y=\frac{24+23+3+x}{4}
y = 50 + x 4 y=\frac{50+x}{4}
x 4 y = 50 x-4y=50
Setup system of linear equations
4 1 1 4 x y = 70 50 \begin{vmatrix} 4 & -1 \\ -1 & 4 \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix} = \begin{vmatrix} 70 \\ 50 \end{vmatrix}
Induce Cramer's rule:
x = 70 1 50 4 4 1 1 4 = 330 15 = 22 x = \frac{\begin{vmatrix} 70 & -1 \\ 50 & 4 \end{vmatrix}}{\begin{vmatrix} 4 & -1 \\ -1 & 4 \end{vmatrix}} = \frac{330}{15}=22
y = 4 70 1 50 4 1 1 4 = 270 15 = 18 y = \frac{\begin{vmatrix} 4 & 70 \\ -1 & 50 \end{vmatrix}}{\begin{vmatrix} 4 & -1 \\ -1 & 4 \end{vmatrix}} = \frac{270}{15}=18
x y = 22 18 = 4 x-y =22-18 =4






We are given 4 x = y + 5 + 49 + 16 4x = y + 5 + 49 + 16 4 y = x + 3 + 24 + 23 4y = x + 3 + 24 + 23 Subtracting these two equations: 4 ( x y ) = ( y x ) + ( 5 3 ) + ( 49 24 ) + ( 16 23 ) 4(x-y) = (y-x) + (5-3) + (49-24) + (16-23) This results in 5 ( x y ) = ( 5 3 ) + ( 49 24 ) + ( 16 23 ) 5(x-y) = (5-3) + (49-24) + (16-23) x y = ( 5 3 ) + ( 49 24 ) + ( 16 23 ) 5 = 4 x-y = \frac{(5-3) + (49-24) + (16-23)}{5} = 4 The surprise in this problem is that x y x-y is not equal to the mean of the differences.

by taking mean of the four white circles and four grey circles,compute the value of y or x and compare both the equations you will get one value by putting that value back in the first equation you will get the other value then you will find x-y.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...