AM-GM Application

Algebra Level 2

Let x , y , z x,y,z be positive real numbers such that 1 x + 1 y + 1 z = 1 \frac { 1 }{ x } +\frac { 1 }{ y } +\frac { 1 }{ z } =1 .

Then what is the minimum value of ( x 1 ) ( y 1 ) ( z 1 ) ? (x-1)(y-1)(z-1)?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Nov 12, 2016

1 x + 1 y + 1 z = 1 x y + y z + z x x y z = 1 x y + y z + z x = x y z \begin{aligned} \frac 1x + \frac 1y + \frac 1z & = 1 \\ \frac {xy+yz+zx}{xyz} & = 1 \\ \implies \color{#3D99F6} xy+yz+zx & \color{#3D99F6}= xyz \end{aligned}

Now, we have:

( x 1 ) ( y 1 ) ( z 1 ) = x y z x y y z z x + x + y + z 1 = 0 + x + y + z 1 By AM-GM inequality 3 x y z 3 1 Equality occurs when x = y = z = 3 9 1 = 8 \begin{aligned} (x-1)(y-1)(z-1) & = {\color{#3D99F6}xyz - xy-yz-zx} + x + y + z - 1 \\ & = {\color{#3D99F6}0}+ {\color{#D61F06}x + y + z} -1 & \small {\color{#D61F06} \text{By AM-GM inequality}} \\ & \ge {\color{#D61F06}3\sqrt[3]{xyz}} - 1 & \small {\color{#D61F06} \text{Equality occurs when }x=y=z=3} \\ & \ge {\color{#D61F06}9} - 1 = \boxed{8} \end{aligned}


Reference: AM-GM inequality

Why is xyz^1/3 =3

Anantha Krishna - 2 years, 8 months ago

Log in to reply

Because when equality occurs x = y = z = 3 x=y=z=3 . For x + y + z = 3 x y z 3 x+y+z = 3\sqrt[3]{xyz} , x = y = z = 3 x=y=z=3 .

Chew-Seong Cheong - 2 years, 8 months ago

From x+y+z-1 = 3sqr3(xyz)-1 (min value) with x=y=z Did u just assume that x=y=z=3? Cause x=y=z=1 or 2 will also fulfill the equation x+y+z-1 = 3sqr3(xyz)-1 and x=y=z, even achieving a smaller value! So I think u should explain like this: Since (x−1)(y−1)(z−1) = x+y+z-1 = 3sqr3(xyz)-1 will achieve its minimum value when x=y=z, 1/x+1/y+1/z=3/x=1 hence x=y=z=3

Foo Tun Jing - 1 year, 10 months ago

Log in to reply

For x + y + z 3 x y z 3 x+y+z \ge 3\sqrt[3]{xyz} , equality always occurs when x = y = z x=y=z . But in this case, 1 x + 1 y + 1 z = 1 \dfrac 1x + \dfrac 1y + \dfrac 1z = 1 3 x = 1 \implies \dfrac 3x = 1 x = 3 = y = z \implies x = 3 = y = z .

Chew-Seong Cheong - 1 year, 10 months ago

how did you get 3.xyz^1/3

abraham ovienloba - 1 year, 3 months ago
Victor Liu
Oct 3, 2020

Expanding ( x 1 ) ( y 1 ) ( z 1 ) (x-1)(y-1)(z-1) we obtain x y z x y x z y z + x + y + z 1 xyz-xy-xz-yz+x+y+z-1 , and because of the equality stated in the problem, we know x y + x z + y z = x y z xy+xz+yz=xyz . Thus, the problem now is to find the minimal value of x + y + z 1 x+y+z-1 . By Cauchy-Schwarz Inequality(sorry for not using AM-GM Inequality), ( x 2 + y 2 + z 2 ) ( 1 / ( x 2 ) + 1 / ( y 2 ) + 1 / ( z 2 ) ) > = 3 2 (\sqrt{x}^2+\sqrt{y}^2+ \sqrt{z} ^2)(1/(\sqrt{x}^2)+1/(\sqrt{y}^2)+1/(\sqrt{z}^2))>=3^2 <=> x + y + z 1 > = 8 x+y+z-1>=8 .

xyz=x+y+z , 1 x \frac{1}{x} + + 1 y \frac{1}{y} + + 1 z \frac{1}{z} >= ( 1 + 1 + 1 ) 2 x + y + z \frac{(1+1+1)^2}{x+y+z} , so x+y+z>=9 --> (x-1)(y-1)(z-1)=x+y+z-1>=8

1/x +1/y +1/z =1 yz+xz+xy=xyz yz+xz=xyz-xy ->z(x+y)=xy(z-1) eq1 similarly, y(x+z)=xz(y-1) eq2 and x(z+y)=zy(x-1) eq3 ultiplying eq 1,2, and 3 z^2x^2y^2(x-1)(z-1)(y-1)=xyz(x+y)(z+y)(x+z) (x-1)(z-1)(y-1)=[(x+y)(z+y)(x+z)]/xyz so min(x-1)(z-1)(y-1)=min[(x+y)(z+y)(x+z)]/xyz [(x+y)(z+y)(x+z)]/xyz=(1+y/x)(1+z/y)(1+x/z) =1+z/y+y/x+z/x+x/z+x/y+y/z+1 so, min(x-1)(z-1)(y-1)=2+min z/y+y/x+z/x+x/z+x/y+y/z using am-gm z/y+y/x+z/x+x/z+x/y+y/z >=6(6throot(z/y)(y/x)(z/x)(x/z)(x/y)(y/z)) z/y+y/x+z/x+x/z+x/y+y/z >=6 so min(x-1)(z-1)(y-1)=2+6=8

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...