Let x , y , z be positive real numbers such that x 1 + y 1 + z 1 = 1 .
Then what is the minimum value of ( x − 1 ) ( y − 1 ) ( z − 1 ) ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Why is xyz^1/3 =3
Log in to reply
Because when equality occurs x = y = z = 3 . For x + y + z = 3 3 x y z , x = y = z = 3 .
From x+y+z-1 = 3sqr3(xyz)-1 (min value) with x=y=z Did u just assume that x=y=z=3? Cause x=y=z=1 or 2 will also fulfill the equation x+y+z-1 = 3sqr3(xyz)-1 and x=y=z, even achieving a smaller value! So I think u should explain like this: Since (x−1)(y−1)(z−1) = x+y+z-1 = 3sqr3(xyz)-1 will achieve its minimum value when x=y=z, 1/x+1/y+1/z=3/x=1 hence x=y=z=3
Log in to reply
For x + y + z ≥ 3 3 x y z , equality always occurs when x = y = z . But in this case, x 1 + y 1 + z 1 = 1 ⟹ x 3 = 1 ⟹ x = 3 = y = z .
how did you get 3.xyz^1/3
Expanding ( x − 1 ) ( y − 1 ) ( z − 1 ) we obtain x y z − x y − x z − y z + x + y + z − 1 , and because of the equality stated in the problem, we know x y + x z + y z = x y z . Thus, the problem now is to find the minimal value of x + y + z − 1 . By Cauchy-Schwarz Inequality(sorry for not using AM-GM Inequality), ( x 2 + y 2 + z 2 ) ( 1 / ( x 2 ) + 1 / ( y 2 ) + 1 / ( z 2 ) ) > = 3 2 <=> x + y + z − 1 > = 8 .
xyz=x+y+z , x 1 + y 1 + z 1 >= x + y + z ( 1 + 1 + 1 ) 2 , so x+y+z>=9 --> (x-1)(y-1)(z-1)=x+y+z-1>=8
1/x +1/y +1/z =1 yz+xz+xy=xyz yz+xz=xyz-xy ->z(x+y)=xy(z-1) eq1 similarly, y(x+z)=xz(y-1) eq2 and x(z+y)=zy(x-1) eq3 ultiplying eq 1,2, and 3 z^2x^2y^2(x-1)(z-1)(y-1)=xyz(x+y)(z+y)(x+z) (x-1)(z-1)(y-1)=[(x+y)(z+y)(x+z)]/xyz so min(x-1)(z-1)(y-1)=min[(x+y)(z+y)(x+z)]/xyz [(x+y)(z+y)(x+z)]/xyz=(1+y/x)(1+z/y)(1+x/z) =1+z/y+y/x+z/x+x/z+x/y+y/z+1 so, min(x-1)(z-1)(y-1)=2+min z/y+y/x+z/x+x/z+x/y+y/z using am-gm z/y+y/x+z/x+x/z+x/y+y/z >=6(6throot(z/y)(y/x)(z/x)(x/z)(x/y)(y/z)) z/y+y/x+z/x+x/z+x/y+y/z >=6 so min(x-1)(z-1)(y-1)=2+6=8
Problem Loading...
Note Loading...
Set Loading...
x 1 + y 1 + z 1 x y z x y + y z + z x ⟹ x y + y z + z x = 1 = 1 = x y z
Now, we have:
( x − 1 ) ( y − 1 ) ( z − 1 ) = x y z − x y − y z − z x + x + y + z − 1 = 0 + x + y + z − 1 ≥ 3 3 x y z − 1 ≥ 9 − 1 = 8 By AM-GM inequality Equality occurs when x = y = z = 3
Reference: AM-GM inequality