AM-GM Inequality 1

Geometry Level 3

f ( x ) = 1 cos 2 x + 4 sin 2 x f(x)=\frac{1}{\cos^2{x}}+\frac{4}{\sin^2{x}}

What is the minimum value of f ( x ) f(x) for 0 < x < π 2 0<x<\displaystyle{\frac{\pi}{2}} ?


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Junghwan Han
Aug 16, 2019

f ( x ) = 1 cos 2 x + 4 sin 2 x f(x)=\frac{1}{\cos^2{x}}+\frac{4}{\sin^2{x}}

Due to the Pythagorean Trigonometric Identity,

f ( x ) = sin 2 x + cos 2 x cos 2 x + 4 ( sin 2 x + cos 2 x ) sin 2 x = 1 + sin 2 x cos 2 x + 4 + 4 cos 2 x sin 2 x f(x)=\frac{\sin^2{x}+\cos^2{x}}{\cos^2{x}}+\frac{4(\sin^2{x}+\cos^2{x})}{\sin^2{x}}=1+\frac{\sin^2{x}}{\cos^2{x}}+4+\frac{4\cos^2{x}}{\sin^2{x}}

Due to the Arithmetic Mean-Geometric Mean Inequality,

sin 2 x cos 2 x + 4 cos 2 x sin 2 x 2 sin 2 x cos 2 x × 4 cos 2 x sin 2 x = 4 \frac{\sin^2{x}}{\cos^2{x}}+\frac{4\cos^2{x}}{\sin^2{x}}\geq 2\sqrt{\frac{\sin^2{x}}{\cos^2{x}}\times\frac{4\cos^2{x}}{\sin^2{x}}}=4

f ( x ) 9 \therefore f(x)\geq 9

Aaghaz Mahajan
Aug 16, 2019

A direct application of Titu's Lemma gives us

1 cos 2 x + 4 sin 2 x ( 1 + 2 ) 2 cos 2 x + sin 2 x = 9 \frac{1}{\cos^2x}+\frac{4}{\sin^2x}\ge\frac{\left(1+2\right)^2}{\cos^2x+\sin^2x}=9

Equality holds when

1 cos x = 2 sin x \frac{1}{\cos x}=\frac{2}{\sin x}

i.e. for x = arctan ( 2 ) \displaystyle x=\arctan\left(2\right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...