AM-GM inequality

Algebra Level 5

3 3 a 3 + 2 a b 2 b 2 3\sqrt{3}a^3+\frac{2}{ab-2b^2}

Find the minimum value of the above expression if a > 2 b > 0 a>2b>0


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chan Lye Lee
Mar 31, 2016

Note that 2 b + ( a 2 b ) 2 2 b ( a 2 b ) \frac{2b+(a-2b)}{2} \ge \sqrt{2b(a-2b)} by AM-GM. This leads 1 b ( a 2 b ) 8 a 2 \frac{1}{b(a-2b)}\ge\frac{8}{a^2} . Now 3 3 a 3 + 2 a b 2 b 2 3 3 a 3 + 16 a 2 = 3 3 a 3 2 + 3 3 a 3 2 + 16 3 a 2 + 16 3 a 2 + 16 3 a 2 3\sqrt{3}a^3+\frac{2}{ab-2b^2} \ge 3\sqrt{3}a^3+\frac{16}{a^2} = \frac{3\sqrt{3}a^3}{2}+\frac{3\sqrt{3}a^3}{2}+\frac{16}{3a^2}+\frac{16}{3a^2}+\frac{16}{3a^2}

5 ( 3 3 a 3 2 × 3 3 a 3 2 × 16 3 a 2 × 16 3 a 2 × 16 3 a 2 ) 1 5 = 20 \ge 5 \left( \frac{3\sqrt{3}a^3}{2} \times \frac{3\sqrt{3}a^3}{2} \times \frac{16}{3a^2} \times \frac{16}{3a^2}\times \frac{16}{3a^2} \right)^\frac{1}{5} = 20

Nice solution. Equality holds when 3 3 a 3 2 = 16 a 2 a = 2 3 3 \dfrac{3\sqrt{3}a^{3}}{2} = \dfrac{16}{a^{2}} \Longrightarrow a = \dfrac{2}{3}\sqrt{3} and b = 3 6 b = \dfrac{\sqrt{3}}{6} , ( a = 4 b a = 4b ).

Brian Charlesworth - 5 years, 2 months ago

What's the problem in this?

Let a 2 b = x a-2b=x .

Then we have the above expression as

3 3 ( 8 b 3 + x 3 + 12 b 2 x + 6 b x 2 ) + 1 / 3 b x + 1 / 3 b x + 1 / 3 b x + 1 / 3 b x + 1 / 3 b x + 1 / 3 b x 3\sqrt{3} ( 8b^{3} + x^{3} + 12b^{2} x + 6bx^{2}) + 1/3bx + 1/3bx + 1/3bx + 1/3bx + 1/3bx + 1/3bx

Now apply A M G M AM\geq GM .

Then we have its minimum value as

10 ( 576 ) 1 / 10 10(576)^{1/10} = 18.888 > 18 18.888 >18 .

Aakash Khandelwal - 5 years, 2 months ago

Log in to reply

Usually it is because the equality never hold . it is nothing wrong to say it is >18.888, but the problem is we can not get the value (for any a and b).

Chan Lye Lee - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...