AM-GM might help (or may not) here

Algebra Level 2

For real numbers x , y x,y , find the maximum value of ( x + y ) 2 ( x 2 + y 2 ) \frac{(x+y)^{2}}{(x^{2}+y^{2})} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

John Aries Sarza
Sep 1, 2014

x 2 + 2 x y + y 2 x 2 + y 2 x 2 + y 2 x 2 + y 2 + 2 x y x 2 + y 2 1 + 2 x y x 2 + y 2 \frac { { x }^{ 2 }+2xy+{ y }^{ 2 } }{ { x }^{ 2 }+{ y }^{ 2 } } \\ \frac { { x }^{ 2 }+{ y }^{ 2 } }{ { x }^{ 2 }+{ y }^{ 2 } } +\frac { 2xy }{ { x }^{ 2 }+{ y }^{ 2 } } \\ 1+\frac { 2xy }{ { x }^{ 2 }+{ y }^{ 2 } } From here, 2 x y x 2 + y 2 \frac { 2xy }{ { x }^{ 2 }+{ y }^{ 2 } } , substitute x and y to sinA and cos A respectively. 2 s i n A c o s A s i n 2 A + c o s 2 A \frac { 2sinAcosA }{ sin^{ 2 }A+{ cos }^{ 2 }A } Take note that s i n 2 A + c o s 2 A = 1 sin^{ 2 }A+{ cos }^{ 2 }A=1 , and 2 s i n A c o s A = s i n 2 A 2sinAcosA={ sin }2A , s i n 2 A 1 , 1 s i n 2 A 1 \frac { { sin }2A }{ 1 } ,\quad -1\le { sin }2A\le 1 The final answer is 1 + 1 = 2 1+1=\boxed{2}

That was a wonderful substitution John! You could have also used the AM-GM finally :P x 2 + y 2 > = 2 x y x^{2}+y^{2}>= 2xy

Jayakumar Krishnan - 6 years, 9 months ago

Log in to reply

Thank you sir.

John Aries Sarza - 4 years, 6 months ago

That is an ingenious solution.I liked it..

Adhiraj Mandal - 6 years, 9 months ago

Log in to reply

thank you sir,..

John Aries Sarza - 4 years, 6 months ago

use am= root mean square

Radhesh Sarma - 5 years, 11 months ago

please check your ans by putting x=1 and y=1

Mayank Gupta - 5 years, 10 months ago
Kim Lehi Alterado
Mar 31, 2016

When solving problems like this one, I use AM-GM . So by simplifying, we get ( x + y ) 2 x 2 + y 2 \frac{(x+y)^{2}}{x^{2}+y^{2}} = = x 2 + y 2 x 2 + y 2 \frac{x^{2}+y^{2}}{x^{2}+y^{2}} + + 2 x y x 2 + y 2 \frac{2xy}{x^{2}+y^{2}} = = 1 + 2 x y x 2 + y 2 1+\frac{2xy}{x^{2}+y^{2}} ( 1 ) (1) At this point, we use AM-GM to get an expression that we can substitute into x 2 + y 2 x^{2}+y^{2} . So, x 2 + y 2 2 \frac{x^{2}+y^{2}}{2} \geq x 2 y 2 \sqrt{x^{2}y^{2}} multiplying 2 2 by both sides, we get x 2 + y 2 x^{2}+y^{2} \geq 2 x y 2xy ( 2 ) (2) . Lastly, by substituting ( 2 ) (2) into ( 1 ) (1) , we get 1 + 2 x y 2 x y 1+\frac{2xy}{2xy} , which gives 1 + 1 1+1 = = 2 \boxed{2} as the answer. (Here, we are sure that we can use AM-GM because x 2 x^{2} and y 2 y^{2} are always positive. We can also say that both x x and y y can't simultaneously be equal to 0 0 because if that happens, we will have an indeterminate form 0 0 \frac{0}{0} and we wouldn't be able to use AM-GM.)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...