AM-GM Practice 1

Algebra Level 4

If x R x\in{\Bbb R} , find the maximum possible value of 1 0 x 10 0 x 10^x-100^x .


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Mathh Mathh
Jul 24, 2014

1 0 x > 0 , x R 10^x>0, \:\forall x\in\mathbb R

Let 1 0 x = a 10^x=a . 1 0 x 10 0 x = a ( 1 a ) = a 2 + a \displaystyle 10^x-100^x=a(1-a)=-a^2+a

There are 4 ways to continue:

  1. Write it as a 2 + a = ( a 2 a ) = ( ( a 0.5 ) 2 0.25 ) \displaystyle -a^2+a=-(a^2-a)=-((a-0.5)^2-0.25) = ( a 0.5 ) 2 + 0.25 0.25 \displaystyle =-(a-0.5)^2+0.25\le \boxed{0.25}

  2. The vertex of the parabola is a v = 1 2 ( 1 ) = 0.5 f ( a v ) = 0.5 ( 1 0.5 ) = 0. 5 2 = 0.25 a_v=-\frac{1}{2(-1)}=0.5\implies f(a_v)=0.5 (1-0.5)=0.5^2=\boxed{0.25}

  3. Using AM-GM (not exactly, since 1 a 1-a is not always non-negative. The inequality a b ( a + b 2 ) 2 ab\le \left(\frac{a+b}{2}\right)^2 holds a , b R \forall a,b\in\mathbb R ). a ( 1 a ) AM-GM ( a + ( 1 a ) 2 ) 2 = 0.25 \displaystyle a(1-a)\stackrel{\text{AM-GM}}\le \left(\frac{a+(1-a)}{2} \right)^2=\boxed{0.25}

  4. Using derivatives.

In all the cases, the maximum is 0.25 \boxed{0.25} and it can be reached when a = 0.5 1 0 x = 0.5 x = log 2 0.3 a=0.5\implies 10^x=0.5\implies x=-\log 2\approx -0.3 . \square

the 5th method(which I used) -

(It is actually not the 5th method but just a simpler version, I think)

Let f(x) = 10 x 100 x = 10 x ( 1 10 x ) {10}^{x} - {100}^{x} = {10}^{x}(1 - {10}^{x})

We may consider it as the RHS of the AM-GM inequality.

Therefore 10 x + 1 10 x {10}^{x} + 1 - {10}^{x} \geq 2 ( f ( x ) ) \sqrt(f(x))

1 \geq 2 ( f ( x ) ) \sqrt(f(x))

1/4 \geq f(x)

as we want the max. value,

max( f(x) ) = 0.25

Kartik Sharma - 6 years, 10 months ago

Log in to reply

Superb.................

Krishna Ar - 6 years, 9 months ago

Excellent...I liked the way you took the pains to explain four different methods to find the solution :)

Krishna Ar - 6 years, 10 months ago

How will you find the maximum possible value of 100^x-1000^x ?

Vijay Simha - 1 year ago
Daniel Ferreira
Aug 3, 2014

Consideremos 1 0 x = k 10^x = k , então:

1 0 x 10 0 x = 1 0 x ( 1 0 x ) 2 = k 2 + k = 10^x - 100^x = \\ 10^x - (10^x)^2 = \\ - k^2 + k =

Ora, da expressão acima tiramos que ela possui um valor máximo; e o mesmo é dado por Y v = Δ 4 a Y_v = - \frac{\Delta}{4a}

Segue que,

Y v = Δ 4 a = Y v = 1 2 4 ( 1 ) 0 4 1 = Y v = 1 4 = Y v = 1 4 Y_v = - \frac{\Delta}{4a} = \\\\ Y_v = - \frac{1^2 - 4 \cdot (- 1) \cdot 0}{4 \cdot - 1} = \\\\ Y_v = - \frac{1}{- 4} = \\\\ \boxed{Y_v = \frac{1}{4}}

Velho, boa solução mas... escreve em inglês da próxima vez!

Felipe Hofmann - 6 years, 10 months ago
Andre Vaillant
Nov 18, 2016

Let y = 10^x - 100^x, so 10^x = y + 100^x

Using AM-GM (y + 100^x)/2 >= 10^x(√y) But since 10^x = y + 100^x, dividing both sides by 10^x gives us 1/2 >= √y thus 1/4 = y is the maximum value.

Muzzammal Alfath
Jul 26, 2014

10^{x}-100^{x}=10^{x}(1-10^{x})............................... {10^{x}(1-10^{x})}^(1/2) <= (10^{x}+1-10^{x})/2........................ 10^{x}(1-10^{x})<= 1/4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...