AM-GM test (CNNer in 2015)

Algebra Level 5

If x x and y y are positive reals such that x + y 3 x + y \ge 3 , then find the minimum value of 2 x 2 + y 2 + 28 x + 1 y 2x^2 + y^2 + \frac{28}x + \frac1y .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Son Nguyen
Oct 19, 2015

All right We predict that x=2,y=1 If equal sign occurs According AM-GM,we have y 2 + 1 2 y y^2+1\geq 2y 2 x 2 + 8 8 x 2x^2+8\geq 8x

1 y + y 2 \frac{1}{y}+y\geq 2 28 x + 7 x 28 \frac{28}{x}+7x\geq 28 ============> 2 x 2 + y 2 + 28 x + 1 y + 7 x + y + 9 8 x + 2 y + 28 + 2 2x^2+y^2+\frac{28}{x}+\frac{1}{y}+7x+y+9\geq 8x+2y+28+2 Finally: 2 x 2 + y 2 + 28 x + 1 y x + y + 21 24 2x^2+y^2+\frac{28}{x}+\frac{1}{y}\geq x+y+21\geq\: 24

Always remember to check the conditions under which you can apply Arithmetic Mean - Geometric Mean . In particular, you need to verify that both terms are positive.

It seems that you are currently missing a condition.

Calvin Lin Staff - 5 years, 7 months ago

Nicely done! I've got a direct solution but it's not as clever as yours

2 x 2 + 28 x + y 2 + 1 y = ( x 2 + x 2 + 8 x ) + ( y 2 2 + y 2 2 + 1 2 y ) + 20 x + 1 2 y 6 x + 3 2 y + 20 x + 1 2 y = = ( 5 x + 20 x ) + ( y 2 + 1 2 y ) + ( x + y ) 20 + 1 + 3 = 24 2{ x }^{ 2 }+\frac { 28 }{ x } +{ y }^{ 2 }+\frac { 1 }{ y } \\ =\left( { x }^{ 2 }+{ x }^{ 2 }+\frac { 8 }{ x } \right) +\left( \frac { { y }^{ 2 } }{ 2 } +\frac { { y }^{ 2 } }{ 2 } +\frac { 1 }{ 2y } \right) +\frac { 20 }{ x } +\frac { 1 }{ 2y } \ge 6x+\frac { 3 }{ 2 } y+\frac { 20 }{ x } +\frac { 1 }{ 2y } =\\ =\left( 5x+\frac { 20 }{ x } \right) +\left( \frac { y }{ 2 } +\frac { 1 }{ 2y } \right) +(x+y)\ge 20+1+3=24

trongnhan khong - 5 years, 7 months ago

Log in to reply

Nice solution

Son Nguyen - 5 years, 7 months ago

Thanks a lot for the beautiful solution!

Adarsh Kumar - 5 years, 7 months ago

Log in to reply

you are welcome

Son Nguyen - 5 years, 7 months ago

I think the RHS of second last expression should be 8 x + 2 y + 30 8x + 2y + 30 . You forgot adding 2.

Anyway, nice solution.

Priyanshu Mishra - 5 years, 7 months ago

Log in to reply

thanks.I will repair

Son Nguyen - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...