Amazing.

Algebra Level 2

I'm just amazed the moment I saw this problem on the net.

What are the solutions of the equation a + b x + c x 2 = 0 a+bx+cx^2=0 ?

You can try My Other Problems .

r = b ± b 2 4 a c 2 c r=\frac{-b\pm\sqrt{b^2-4ac}}{2c} ( x = a ) , ( x = b ) (x=a), (x=-b) r = b ± b 2 4 a c 2 a r=\frac{-b\pm\sqrt{b^2-4ac}}{2a} ( x = a ) , ( x = a ) (x=a), (x=-a)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jaydee Lucero
Jul 2, 2017

Comparison with the form A x 2 + B x + C = 0 Ax^2+Bx+C=0 gives us A = c , B = b , C = a A=c,B=b,C=a . Therefore, by quadratic formula, x 1 , x 2 = B ± B 2 4 A C 2 A = b ± b 2 4 c a 2 c = b ± b 2 4 a c 2 c x_1 , x_2 = \frac{-B\pm \sqrt{B^2 - 4AC}}{2A}=\frac{-b\pm \sqrt{b^2-4ca}}{2c}=\boxed{\displaystyle{\frac{-b\pm \sqrt{b^2-4ac}}{2c}}} By switching the constant term and the leading coefficient of the quadratic equation, only the denominator of quadratic formula changes. The rest are essentially the same. :)

Stewart Feasby
Oct 1, 2014

Here's my solution, I apologise for writing it completely in LaTex, but it made typing it so much easier!

S t a r t i n g w i t h t h e e q u a t i o n : c x 2 + b x + a = 0 W e c a n f i r s t f a c t o r i s e b y c : c ( x 2 + b x c + a c ) = 0 N o w , c o m p l e t i n g t h e s q u a r e i n s i d e t h e b r a c k e t s g i v e s : c ( ( x + b 2 c ) 2 b 2 4 c 2 + a c ) = 0 M u l t i p l y i n g a c b y 4 c 4 c w i l l g i v e : c ( ( x + b 2 c ) 2 b 2 4 a c 4 c 2 ) = 0 M u l t i p l y i n g o u t b y c a g a i n g i v e s : c ( x + b 2 c ) 2 b 2 4 a c 4 c = 0 T a k i n g t h e n e g a t i v e t o t h e r i g h t g i v e s : c ( x + b 2 c ) 2 = b 2 4 a c 4 c D i v i d i n g b y c : ( x + b 2 c ) 2 = b 2 4 a c 4 c 2 S q u a r e r o o t i n g b o t h s i d e s : x + b 2 c = ± b 2 4 a c 2 c A n d f i n a l l y s u b t r a c t i n g b 2 c g i v e s : x = b ± b 2 4 a c 2 c Starting\quad with\quad the\quad equation:\\ { cx }^{ 2 }+bx+a=0\\ \\ We\quad can\quad first\quad factorise\quad by\quad c:\\ c({ x }^{ 2 }+\frac { bx }{ c } +\frac { a }{ c } )\quad =\quad 0\\ Now,\quad completing\quad the\quad square\quad inside\quad the\quad brackets\quad gives:\\ c({ (x }+\frac { b }{ 2c } { ) }^{ 2 }-\frac { { b }^{ 2 } }{ { 4c }^{ 2 } } +\frac { a }{ c } )\quad =\quad 0\\ Multiplying\quad \frac { a }{ c } \quad by\quad \frac {4c}{4c}\quad will\quad give:\\ c({ (x }+\frac { b }{ 2c } { ) }^{ 2 }-\frac { { b }^{ 2 }-4ac }{ { 4c }^{ 2 } } )\quad =\quad 0\\ Multiplying\quad out\quad by\quad c\quad again\quad gives:\\ c{ (x }+\frac { b }{ 2c } { ) }^{ 2 }-\frac { { b }^{ 2 }-4ac }{ { 4c } } \quad =\quad 0\\ Taking\quad the\quad negative\quad to\quad the\quad right\quad gives:\\ c{ (x }+\frac { b }{ 2c } { ) }^{ 2 }\quad =\quad \frac { { b }^{ 2 }-4ac }{ { 4c } } \\ Dividing\quad by\quad c:\\ { (x }+\frac { b }{ 2c } { ) }^{ 2 }\quad =\quad \frac { { b }^{ 2 }-4ac }{ { 4{ c }^{ 2 } } } \\ Square\quad rooting\quad both\quad sides:\\ { x }+\frac { b }{ 2c } \quad =\quad \frac { \pm \sqrt { { b }^{ 2 }-4ac } }{ { { 2c } } } \\ And\quad finally\quad subtracting\quad \frac { b }{ 2c } \quad gives:\\ \boxed { x\quad =\quad \frac { -b\pm \sqrt { { b }^{ 2 }-4ac } }{ { { 2c } } } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...