Amazing Factorial Summation

Calculus Level 3

1 2 1 ! + 2 ! + 2 3 2 ! + 3 ! + 3 4 3 ! + 4 ! + 4 5 4 ! + 5 ! + = ? \large\dfrac{1\cdot2}{1!+2!}+\dfrac{2\cdot3}{2!+3!}+\dfrac{3\cdot4}{3!+4!}+\dfrac{4\cdot5}{4!+5!}+\cdots=\ ?

Notation :
! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

S = 1 2 1 ! + 2 ! + 2 3 2 ! + 3 ! + 3 4 3 ! + 4 ! + 4 5 4 ! + 5 ! + = n = 1 n ( n + 1 ) n ! + ( n + 1 ) ! = n = 1 n ( n + 1 ) n ! ( n + 2 ) = n = 1 n + 1 ( n + 2 ) ( n 1 ) ! = n = 0 n + 2 ( n + 3 ) n ! \begin{aligned} \color{#3D99F6}{S} & = \frac{1 \cdot 2}{1!+2!} + \frac{2 \cdot 3}{2!+3!} + \frac{3 \cdot 4}{3!+4!} + \frac{4 \cdot 5}{4!+5!} + \cdots \\ & = \sum_{n=1}^\infty \frac{n(n+1)}{n!+(n+1)!} \\ & = \sum_{n=1}^\infty \frac{n(n+1)}{n!(n+2)} \\ & = \sum_{n=1}^\infty \frac{n+1}{(n+2)(n-1)!} \\ & = \color{#3D99F6}{\sum_{n=0}^\infty \frac{n+2}{(n+3)n!}} \end{aligned}

Now consider the Maclaurin series of e x e^x ,

n = 1 x n n ! = e x n = 1 x n + 2 n ! = x 2 e x Integrate both sides n = 1 x n + 3 ( n + 3 ) n ! = x 2 e x 2 x e x + 2 e x 2 Get from putting x = 0 ; × 1 x both sides n = 1 x n + 2 ( n + 3 ) n ! = x e x 2 e x + 2 e x x 2 x Differentiate both sides n = 1 ( n + 2 ) x n + 1 ( n + 3 ) n ! = e x + x e x 2 e x + 2 e x x 2 e x x 2 + 2 x 2 Putting x = 1 n = 1 n + 2 ( n + 3 ) n ! = e + e 2 e + 2 e 2 e + 2 S = 2 \begin{aligned} \sum_{n=1}^\infty \frac{x^n}{n!} & = e^x \\ \sum_{n=1}^\infty \frac{x^{n+2}}{n!} & = x^2e^x \quad \quad \small \color{#3D99F6}{\text{Integrate both sides}} \\ \sum_{n=1}^\infty \frac{x^{n+3}}{(n+3)n!} & = x^2e^x - 2xe^x + 2e^x \color{#D61F06}{- 2} \quad \quad \small \color{#D61F06}{\text{Get from putting }x=0};\quad \color{#3D99F6}{\times \frac{1}{x} \text{ both sides}} \\ \sum_{n=1}^\infty \frac{x^{n+2}}{(n+3)n!} & = xe^x - 2e^x + \frac{2e^x}{x} - \frac{2}{x} \quad \quad \small \color{#3D99F6}{\text{Differentiate both sides}} \\ \sum_{n=1}^\infty \frac{(n+2)x^{n+1}}{(n+3)n!} & = e^x + xe^x - 2e^x + \frac{2e^x}{x} - \frac{2e^x}{x^2} + \frac{2}{x^2} \quad \quad \small \color{#3D99F6}{\text{Putting }x=1} \\ \color{#3D99F6} {\sum_{n=1}^\infty \frac{n+2}{(n+3)n!}} & = e + e - 2e + 2e - 2e + 2 \\ \implies \color{#3D99F6}{S} & = \boxed{2} \end{aligned}

Let us denote the general term by T n T_{n} .

Then we have

T n = n ( n + 1 ) / n ! ( n + 2 ) T_n = n(n+1)/n! (n+2) .

Adding and removing 2 from numerator ,

T n = n 1 / n ! + 2 / n ! ( n + 2 ) T_n = n-1/n! + 2/n!(n+2) .

Therefore we generate last expression before telescoping.

T n = ( 1 / ( n 1 ) ! 1 / n ! ) + 2 ( 1 / ( n + 1 ) ! 1 / ( n + 2 ) ! ) T_n = (1/(n-1)! - 1/n!) + 2( 1/(n+1)! - 1/(n+2)!)

Thus after taking sum from n = 1 to \infty Answer is 2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...