Amazing \prod . <2>

Geometry Level 4

k = 1 45 sin ( 2 k ) = m 2 n \large \prod_{k=1}^{45}\sin(2k^{\circ})=\frac{\sqrt{m}}{2^{n}}

In the equation above, m m and n n are positive integers, where m m is odd.

Determine the value of m n m-n .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

From the reference (equation (24)) , we have k = 1 n 1 sin ( k π n ) = 2 1 n n \displaystyle \prod_{k=1}^{n-1} \sin \left(\frac {k\pi}n\right) = 2^{1-n} n . Then

k = 1 89 sin ( k π 90 ) = 90 2 89 k = 1 89 sin ( 2 k ) = 45 2 88 k = 1 45 sin ( 2 k ) k = 46 89 sin ( 2 k ) = 45 2 88 Since sin ( 180 x ) = sin x k = 1 45 sin ( 2 k ) k = 1 44 sin ( 2 k ) = 45 2 88 Since sin 9 0 = 1 k = 1 45 sin ( 2 k ) k = 1 45 sin ( 2 k ) = 45 2 88 \begin{aligned} \prod_{k=1}^{89} \sin \left(\frac {k\pi}{90}\right) & = \frac {90}{2^{89}} \\ \implies \prod_{k=1}^{89} \sin (2k^\circ) & = \frac {45}{2^{88}} \\ \prod_{k=1}^{45} \sin (2k^\circ) \color{#3D99F6} \prod_{k=46}^{89} \sin (2k^\circ) & = \frac {45}{2^{88}} & \small \color{#3D99F6} \text{Since }\sin (180-x)^\circ = \sin x^\circ \\ \prod_{k=1}^{45} \sin (2k^\circ) \color{#3D99F6} \prod_{k=1}^{44} \sin (2k^\circ) & = \frac {45}{2^{88}} & \small \color{#3D99F6} \text{Since }\sin 90^\circ = 1 \\ \prod_{k=1}^{45} \sin (2k^\circ) \color{#3D99F6} \prod_{k=1}^{\color{#D61F06}45} \sin (2k^\circ) & =\frac {45}{2^{88}} \end{aligned}

k = 1 45 sin ( 2 k ) = 45 2 88 = 45 2 44 \begin{aligned} \implies \prod_{k=1}^{45} \sin (2k^\circ) & = \sqrt{\frac {45}{2^{88}}} = \frac {\sqrt{45}}{2^{44}} \end{aligned}

Therefore, m n = 45 44 = 1 m-n = 45-44 = \boxed{1} .

Haosen Chen
Jun 5, 2018

Clearly we should use root of unity .Let ω = c o s ( 2 π 90 ) + i s i n ( 2 π 90 ) \omega=cos(\frac{2\pi}{90})+isin(\frac{2\pi}{90}) . Then ω k 2 = c o s ( k π 90 ) + i s i n ( k π 90 ) \omega^{\frac{k}{2}}=cos(\frac{k\pi}{90})+isin(\frac{k\pi}{90}) .

k = 1 45 s i n ( k π 90 ) = k = 1 45 ω k 2 ω k 2 2 i = k = 1 45 ω k 1 2 i ω k 2 \displaystyle\prod_{k=1}^{45}sin(\frac{k\pi}{90})=\prod_{k=1}^{45}\frac{\omega^{\frac{k}{2}}-\omega^{\frac{-k}{2}}}{2i}=\prod_{k=1}^{45}\frac{\omega^{k}-1}{2i\omega^{\frac{k}{2}}} .

Note that s i n ( 45 π 90 ) = 1 sin(\frac{45\pi}{90})=1 and k = 1 44 s i n ( k π 90 ) = k = 46 89 s i n ( k π 90 ) > 0 \displaystyle\prod_{k=1}^{44}sin(\frac{k\pi}{90})=\prod_{k=46}^{89}sin(\frac{k\pi}{90})>0 ,

( k = 1 45 s i n ( k π 90 ) ) 2 \displaystyle (\prod_{k=1}^{45}sin(\frac{k\pi}{90}))^{2} = k = 1 89 s i n ( k π 90 ) \displaystyle=\prod_{k=1}^{89}sin(\frac{k\pi}{90}) = k = 1 89 ω k 1 2 i ω k 2 \displaystyle=\prod_{k=1}^{89}\frac{\omega^{k}-1}{2i\omega^{\frac{k}{2}}}

= 2 89 k = 1 89 ( 1 ω k ) = 45 2 88 \displaystyle=2^{-89}\cdot \prod_{k=1}^{89}(1-\omega^{k})=\frac{45}{2^{88}} .

The last step relies on the equality n = k = 1 n 1 ( 1 ε k ) \displaystyle n=\prod_{k=1}^{n-1}(1-\varepsilon_{k}) ,here ε k = e x p ( 2 k π i n ) \varepsilon_{k}=exp(\frac{2k\pi i}{n}) .

Thus m = 45 , n = 44 , m n = 1 m=45,n=44,m-n=\boxed{1} .

Can you explore why n = k = 1 n 1 ( 1 ε k ) \displaystyle n=\prod_{k=1}^{n-1}(1-\varepsilon_{k}) ? Or just give me a link, I want to read it! I have seen many of solution like this but the writer just doesn't give the proof.

Kelvin Hong - 3 years ago

Log in to reply

It's clear that forall real x≠1: k = 0 n 1 x k = \displaystyle\sum_{k=0}^{n-1}x^{k}= x n 1 x 1 = k = 0 n 1 ( x ε k ) x 1 = k = 1 n 1 ( x ε k ) \displaystyle\frac{x^{n}-1}{x-1}=\frac{\prod_{k=0}^{n-1}(x-\varepsilon_{k})}{x-1}=\prod_{k=1}^{n-1}(x-\varepsilon_{k}) .Then let x 1 x\rightarrow1 we get n = k = 1 n 1 ( 1 ε k ) \displaystyle n=\prod_{k=1}^{n-1}(1-\varepsilon_{k}) (this step may be not rigorous,but I think it's still acceptable).

Haosen Chen - 3 years ago

Log in to reply

Wow! The proving method is clever! Appreciate that.

Kelvin Hong - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...