Amazing Trigonometry_5

Geometry Level 3

[ cos ( 6 ) sin ( 2 4 ) cos ( 7 2 ) ] 1 = ? \large \left [\cos ({ 6^\circ }) \sin ({ 24^\circ })\cos ({ 72^\circ }) \right]^{-1} = \ ?

This problem is a part of this set .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 21, 2015

cos 6 sin 2 4 cos 7 2 = cos 6 ( sin 6 cos 1 8 + cos 6 sin 1 8 ) cos 7 2 = 1 2 [ 2 cos 6 sin 6 cos 1 8 + ( 2 cos 2 6 1 + 1 ) sin 1 8 ] cos 7 2 = 1 2 [ sin 1 2 cos 1 8 + cos 1 2 sin 1 8 + sin 1 8 ] cos 7 2 = 1 2 [ sin 3 0 + sin 1 8 ] cos 7 2 = 1 2 ( 1 2 + sin 1 8 ) cos 7 2 = 1 4 cos 7 2 + 1 2 sin 1 8 sin ( 9 0 7 2 ) = 1 4 cos 7 2 1 4 ( 1 2 sin 2 1 8 1 ) = 1 4 cos 7 2 1 4 cos 3 6 + 1 4 = 1 4 cos 10 8 1 4 cos 3 6 + 1 4 = 1 4 [ 1 ( cos 3 6 + cos 10 8 ) ] [See Note] = 1 4 [ 1 1 2 ] = 1 8 1 cos 6 sin 2 4 cos 7 2 = 8 \cos{6^\circ}\sin{24^\circ}\cos{72^\circ} \\ = \cos{6^\circ} (\sin{6^\circ} \cos{18^\circ} + \cos{6^\circ} \sin{18^\circ}) \cos{72^\circ} \\ = \dfrac{1}{2} [2\cos{6^\circ} \sin{6^\circ} \cos{18^\circ} + (2\cos^2{6^\circ} - 1 +1) \sin{18^\circ} ] \cos{72^\circ} \\ = \dfrac{1}{2} [\sin{12^\circ} \cos{18^\circ} + \cos{12^\circ} \sin{18^\circ} + \sin{18^\circ} ] \cos{72^\circ} \\ = \dfrac{1}{2} [\sin{30^\circ} + \sin{18^\circ} ] \cos{72^\circ} \\ = \dfrac{1}{2} \left(\dfrac{1}{2}+ \sin{18^\circ} \right) \cos{72^\circ} \\= \dfrac{1}{4} \cos{72^\circ} + \dfrac {1}{2} \sin{18^\circ} \sin{(90^\circ-72^\circ)} \\= \dfrac{1}{4} \cos{72^\circ} - \dfrac {1}{4} (1 - 2 \sin^2{18^\circ} - 1) \\= \dfrac{1}{4} \cos{72^\circ} - \dfrac {1}{4} \cos{36^\circ} + \dfrac{1}{4} \\= - \dfrac{1}{4} \cos{108^\circ} - \dfrac {1}{4} \cos{36^\circ} + \dfrac{1}{4} \\= \dfrac{1}{4} [1 - \color{#3D99F6}{(\cos{36^\circ} + \cos{108^\circ})}] \quad \quad \quad \quad \color{#3D99F6}{ \text{[See Note]}}\\ = \dfrac{1}{4} \left[1 - \color{#3D99F6}{\dfrac{1}{2}} \right] = \dfrac {1}{8} \quad \Rightarrow \dfrac {1} {\cos{6^\circ}\sin{24^\circ}\cos{72^\circ}} = \boxed{8}

Note: z 10 = e π 5 i = 1 , the 10 t h roots of unity. By Argand’s diagram, we note that cos π 5 + cos 3 π 5 = 1 2 . \color{#3D99F6}{\text{Note: } z^{10} = e^{\frac{\pi}{5}i} = 1 \text{, the 10}^{th} \text{ roots of unity. By Argand's diagram,} \\ \text{we note that } \cos{\frac{\pi}{5}} + \cos{\frac{3\pi}{5}} = \frac{1}{2}.}

Mas Mus
Oct 9, 2015

cos 6 cos 2 4 cos 7 2 = 1 2 ( sin 3 0 + sin 1 8 ) cos 7 2 = 1 4 cos 7 2 + 1 2 sin 1 8 cos 7 2 = 1 4 sin 1 8 + 1 4 ( sin 9 0 sin 5 4 ) = 1 4 + 1 4 ( sin 1 8 sin 5 4 ) = 1 4 + 1 4 ( 2 cos 3 6 sin 1 8 ) cos 1 8 cos 1 8 = 1 4 1 4 ( cos 3 6 sin 3 6 ) cos 1 8 = 1 4 1 8 sin 7 2 sin 7 2 = 1 8 \begin{array}{c}&\cos6^{\circ}\cos24^{\circ}\cos72^{\circ}&=\dfrac{1}{2}\left(\sin30^{\circ}+\sin18^{\circ}\right)\cos72^{\circ}=\dfrac{1}{4}\cos72^{\circ}+\dfrac{1}{2}\sin18^{\circ}\cos72^{\circ}\\\\&=\dfrac{1}{4}\sin18^{\circ}+\frac{1}{4}\left(\sin90^{\circ}-\sin54^{\circ}\right)=\dfrac{1}{4}+\dfrac{1}{4}\left(\sin18^{\circ}-\sin54^{\circ}\right)\\\\&=\dfrac{1}{4}+\dfrac{1}{4}\dfrac{\left(-2\cos36^{\circ}\sin18^{\circ}\right)\cos18^{\circ}}{\cos18^{\circ}}=\dfrac{1}{4}-\dfrac{1}{4}\dfrac{\left(\cos36^{\circ}\sin36^{\circ}\right)}{\cos18^{\circ}}\\\\&=\dfrac{1}{4}-\dfrac{1}{8}\dfrac{\sin72^{\circ}}{\sin72^{\circ}}=\dfrac{1}{8}\end{array}

Thus, [ cos 6 cos 2 4 cos 7 2 ] 1 = 8 \large{\left[\cos6^{\circ}\cos24^{\circ}\cos72^{\circ}\right]^{-1}=8}

Ankit Kumar Jain
Jun 11, 2017

= cos 6 cos 66 cos 72 =\cos6^{\circ}\cos{66}^{\circ}\cos{72}^{\circ}

= cos 72 4 ( 4 cos 54 cos 6 cos 66 ) =\dfrac{\cos{72}^{\circ}}{4}\left(4\cos{54}^{\circ}\cos{6}^{\circ}\cos{66}^{\circ}\right)

= cos 72 cos 18 4 cos 54 cos ( 3 A ) = 4 cos ( 60 A ) cos ( A ) cos ( 60 + A ) =\dfrac{\cos{72}^{\circ}\cos{18}^{\circ}}{4\cos{54}^{\circ}} \qquad \color{#3D99F6}{\cos(3A) = 4\cos(60-A)\cos(A)\cos(60+A)}

= 2 sin 18 cos 18 8 sin 36 sin ( 90 A ) = cos ( A ) , cos ( 90 A ) = sin ( A ) =\dfrac{2\sin{18}^{\circ}\cos{18}^{\circ}}{8\sin{36}^{\circ}} \qquad \color{#3D99F6}{\sin(90-A) = \cos(A) \quad , \cos(90-A)=\sin(A)}

= sin 36 8 sin 36 2 sin ( A ) cos ( A ) = sin ( 2 A ) =\dfrac{\sin{36}^{\circ}}{8\sin{36}^{\circ}} \qquad \qquad \quad \color{#3D99F6}{2\sin(A)\cos(A) = \sin(2A)}

= 1 8 =\boxed{\dfrac18}

Our answer is 8 \therefore \text{Our answer is} \quad \boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...