Ambiguity of Small and Large

Algebra Level 4

Let the sum of the zeros of 5 x 5 = x 4 5x^5=x^4 be r r .

Evaluate p + q p+q , when p q = 3 r 2 + 4 r 3 + 5 r 4 + 6 r 5 + \dfrac pq=3r^2+4r^3+5r^4+6r^5+\cdots and p , q p,q are coprime positive integers.


The answer is 93.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Sujoy Roy
Nov 23, 2014

5 x 5 = x 4 5x^5=x^4 or, x 4 ( x 1 5 ) = 0 x^4(x-\frac{1}{5})=0 . So, r = 1 5 r=\frac{1}{5} .

Now, p q = 3 r 2 + 4 r 3 + 5 r 4 + 6 r 5 + = ( 1 + 2 r + 3 r 2 + 4 r 3 + 5 r 4 + 6 r 5 + ) ( 1 + 2 r ) = ( 1 r ) 2 ( 1 + 2 r ) = 25 16 ( 1 + 2 5 ) = 13 80 \frac{p}{q}=3r^2+4r^3+5r^4+6r^5+\ldots \\ =(1+2r+3r^2+4r^3+5r^4+6r^5+\ldots)-(1+2r) \\ =(1-r)^{-2}-(1+2r) =\frac{25}{16}-(1+\frac{2}{5}) =\frac{13}{80} .

So, p + q = 13 + 80 = 93 p+q=13+80=\boxed{93}

Another way to look at this is that the series whose value we have to find out is an arithmetico-geometric progression and since r < 1 |r|\lt 1 , algebraic manipulations on the sum will be valid. Take the sum as S S and find ( S r S ) (S-rS) and you will see that a part of the right side will come as an infinite GP sequence and you can just use the infinite GP formula and put the value of r r in the equation obtained to find the value of S S .

Prasun Biswas - 6 years, 6 months ago

I almost had it, but I MULTIPLIED by 20 instead of dividing. >:[

Guy Alves - 4 years, 7 months ago
Kishore S. Shenoy
Oct 18, 2016

f ( x ) = 5 x 5 x 4 f(x) = 5x^5-x^4

Using Vieta's, sum of roots = 1 5 \dfrac 15 . So r = 1 5 r = \dfrac 15

Given sum is S = 3 x 2 + 4 x 3 + 5 x 4 + = k = 3 k x k 1 = d d x k = 3 x k = d d x { x 3 1 x } = 3 ( 1 x ) x 2 + x 3 ( 1 x ) 2 \begin{aligned}S &= 3x^2 + 4x^3 + 5x^4 + \cdots\\ &= \sum_{k=3}^\infty kx^{k-1}\\&=\dfrac d{dx} \sum_{k=3}^\infty x^k\\&=\dfrac d{dx} \left\{\dfrac{x^3}{1-x}\right\}\\&=\dfrac{3(1-x)x^2+x^3}{(1-x)^2}\end{aligned}

So, p q = 3 4 + 1 5 16 = 13 80 \dfrac p q = \dfrac{3\cdot 4 + 1}{5\cdot 16}=\dfrac {13}{80}

Hence, p + q = 93 \color{#3D99F6}{p+q = \boxed{93}}

Rushikesh Jogdand
Oct 28, 2016

Relevant wiki: Arithmetic and Geometric Progressions Problem Solving

5 x 5 = x 4 x { 0 , 1 5 } 5x^5 = x^4 \quad \implies \quad x \in \left\{ 0 , \frac{1}{5} \right\} r = 1 5 \therefore \boxed{ r = \frac{1}{5} }

Let, S = p q = 3 r 2 + 4 r 3 + 5 r 4 + 6 r 5 + S = \frac{p}{q} = 3r^2 + 4r^3 + 5r^4 + 6r^5 + \cdots r × S = 3 r 3 + 4 r 4 + 5 r 5 + 6 r 6 + \therefore r\times S = 3r^3 + 4r^4 + 5r^5 + 6r^6 + \cdots ( 1 r ) × S = 3 r 2 + r 3 + r 4 + r 5 + \therefore (1 - r) \times S = 3r^2 + r^3 + r^4 + r^5 + \cdots

Remember Geometric Progression

S = 1 1 r × ( 3 r 2 + r 3 1 1 r ) = r 2 ( 3 2 r ) ( 1 r ) 2 \implies S = \frac{1}{1 - r} \times \left( 3r^2 + r^3\frac{1}{1 - r} \right) = \frac{r^2(3-2r)}{(1 - r)^2} S = 13 80 = p q \therefore S = \frac{13}{80} = \frac{p}{q} p + q = 93 \boxed{p+q = 93}

I did it with the exactly same method

Vineet Rana - 4 years, 6 months ago
Christian Daang
Nov 23, 2016

r = 1 5 by vieta’s formula. r = \frac{1}{5} \\\ \text {by vieta's formula.}

let S = 3 r 2 + 4 r 3 + . . . S = 3r^{2} + 4r^{3} + ...

r s = 3 r 3 + 4 r 4 + . . . \rightarrow rs = 3r^{3} + 4r^{4} + ...

S ( 1 r ) = 3 r 2 + r 3 + r 4 + . . . \rightarrow S(1-r) = 3r^{2} + r^{3} + r^{4} + ...

S ( 1 r ) = 3 r 2 + r 3 1 r \rightarrow S(1-r) = 3r^{2} + \dfrac{r^{3}}{1-r}

substituting r = 1 5 r = \frac{1}{5}

S ( 4 5 ) = 3 ( 1 5 ) 2 + 1 125 4 5 \rightarrow S(\frac{4}{5}) = 3(\frac{1}{5})^{2} + \dfrac{\frac{1}{125}}{\frac{4}{5}}

S ( 4 5 ) = 3 25 + 1 100 \rightarrow S(\frac{4}{5}) = \frac{3}{25} + \frac{1}{100}

S = 3 20 + 1 80 = 13 80 \rightarrow S = \frac{3}{20} + \frac{1}{80} = \frac{13}{80}

p + q = 13 + 80 = 93 \rightarrow \boxed{p + q = 13 + 80 = 93} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...