An Abstract Way to Celebrate the New Year!

Level pending

What is the sum of the last two digits of 1 ! 2 ! + 3 ! 4 ! + + 2011 ! 2012 ! + 2013 ! 2014 ! ? |1!-2!+3!-4!+\ldots+2011!-2012!+2013!-2014!| ?


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kenny Lau
Jan 1, 2014

1 ! 2 ! + 3 ! 4 ! + + 2011 ! 2012 ! + 2013 ! 2014 ! = 1 ! 1 ! × 2 + 3 ! 3 ! × 4 + + 2013 ! 2013 ! × 2014 = 1 ! ( 1 2 ) + 3 ! ( 1 4 ) + + 2013 ! ( 1 2014 ) = 1 × 1 ! 3 × 3 ! 5 × 5 ! 7 × 7 ! 9 × 9 ! 11 × 11 ! 2013 × 2013 ! = 1 × 1 ! + 3 × 3 ! + 5 × 5 ! + 7 × 7 ! + 9 × 9 ! + 11 × 11 ! + + 2013 × 2013 ! 1 × 1 ! + 3 × 3 ! + 5 × 5 ! + 7 × 7 ! + 9 × 9 ! (mod 100) = 3301819 19 (mod 100) \begin{array}{ll} &|1!-2!+3!-4!+\cdots+2011!-2012!+2013!-2014!|\\ =&|1!-1!\times2+3!-3!\times4+\cdots+2013!-2013!\times2014|\\ =&|1!(1-2)+3!(1-4)+\cdots+2013!(1-2014)|\\ =&|-1\times1!-3\times3!-5\times5!-7\times7!-9\times9!-11\times11!-\cdots-2013\times2013!|\\ =&1\times1!+3\times3!+5\times5!+7\times7!+9\times9!+11\times11!+\cdots+2013\times2013!\\ \equiv&1\times1!+3\times3!+5\times5!+7\times7!+9\times9!&\mbox{(mod 100)}\\ =&3301819\\ \equiv&19&\mbox{(mod 100)} \end{array}

The key here is to realize that factorials greater than 10 are divisible by 100. (Proving this is left to the readers as an exercise)

@Joshua_Ong I would name it as an absolutely fantastic way to celebrate the new year.

Kenny Lau - 7 years, 5 months ago

Thanks :)

Joshua Ong - 7 years, 5 months ago

10! itself is divisible by 100

Eddie The Head - 7 years, 1 month ago
Victor Loh
Dec 31, 2013

An interesting pattern can be found.

The sum of the last 2 2 digits of 1 ! 2 ! + . . . 8 ! + 9 ! = 8 + 1 = 9 |1!-2!+...-8!+9!| = 8+1=9 .

The sum of the last 2 2 digits of 1 ! 2 ! + . . . + 9 ! 10 ! = 1 + 9 = 10 |1!-2!+...+9!-10!| = 1+9=10 .

Repeating this, we obtain

Sum of the last 2 2 digits of 1 ! 2 ! + . . . n ! = 9 |1!-2!+...n!| = 9 when n n is odd and 10 10 when n n is even.

Since 2014 2014 is even, the required answer is 10 \boxed{10} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...