An algebra problem about "2019"

Algebra Level 2

1 2 + 3 4 + 2018 + 2019 = ? \large 1-2+3-4+\dots -2018+2019=?


The answer is 1010.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Henry U
Mar 3, 2019

S = 1 2 + 3 4 + 5 6 + + 2015 2016 + 2017 2018 + 2019 = ( 1 2 ) + ( 3 4 ) + ( 5 6 ) + + ( 2015 2016 ) + ( 2017 2018 ) + 2019 = ( 1 ) + ( 1 ) + ( 1 ) 1009 terms + 2019 = 1009 ( 1 ) + 2019 = 1009 + 2019 = 1010 \begin{aligned} S &= 1-2+3-4+5-6+\cdots+2015-2016+2017-2018+2019 \\ &= (1-2)+(3-4)+(5-6)+\cdots+(2015-2016)+(2017-2018)+2019 \\ &= \underbrace{(-1)+(-1)+(-1)}_{1009 \text{ terms}}+2019 \\ &= 1009 \cdot (-1) + 2019 \\ &= -1009+2019 \\ &= \boxed{1010} \end{aligned}

Another way:

S = 1 2 + 3 4 + 5 6 + + 2015 2016 + 2017 2018 + 2019 = ( 1 + 3 + 5 + 7 + + 2015 + 2017 + 2019 ) ( 2 + 4 + 6 + + 2016 + 2018 ) = ( 2019 + 1 2 ) 2 2 ( 1 + 2 + 3 + + 1008 + 1009 ) = 101 0 2 2 1009 1010 2 = 1010 1010 1009 1010 = ( 1010 1009 ) 1010 = 1010 \begin{aligned} S &= 1-2+3-4+5-6+\cdots+2015-2016+2017-2018+2019 \\ &= {\color{#D61F06}(1+3+5+7+\cdots+2015+2017+2019)} - {\color{#3D99F6}(2+4+6+\cdots+2016+2018)} \\ &= {\color{#D61F06} \left( \frac{2019+1}{2} \right) ^2} - {\color{#3D99F6}2 \cdot (1+2+3+\cdots+1008+1009)} \\ &= {\color{#D61F06}1010^2} - {\color{#3D99F6}2 \cdot \frac {1009 \cdot 1010}2} \\ &= {\color{#D61F06}1010 \cdot 1010} - {\color{#3D99F6}1009 \cdot 1010} \\ &= (1010-1009) \cdot 1010 \\ &= \boxed{1010} \end{aligned}

The first one is the best one

Ram Mohith - 2 years, 3 months ago

Log in to reply

That is exactly what I did

Syed Hamza Khalid - 1 year, 8 months ago
Jordan Cahn
Mar 4, 2019

1 2 + 3 4 + 2018 + 2019 = 1 + ( 2 + 3 ) + ( 4 + 5 ) + + ( 2018 + 2019 ) = 1 + 1 + + 1 2018 2 1 s = 1 + 1009 = 1010 \begin{aligned} 1-2+3-4+\cdots-2018+2019 &= 1+(-2+3)+(-4+5) +\cdots + (-2018+2019) \\ &= 1+\underbrace{1+\cdots+1}_{\frac{2018}{2} \text{ }1\text{s}} \\ &= 1+1009 \\ &= \boxed{1010} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...