An algebra problem by حسن العطية

Algebra Level 2

If a 2 1 b 2 b 2 1 a 2 = 9 \dfrac { { a }^{ 2 }-\dfrac { 1 }{ { b }^{ 2 } } }{ { b }^{ 2 }-\dfrac { 1 }{ { a }^{ 2 } } } =9 , then what is the value of a b \left| \dfrac { a }{ b } \right| ?

and a b 1 \left| ab \right| \neq 1


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

a 2 1 b 2 b 2 1 a 2 = 9 \frac { { a }^{ 2 }-\frac { 1 }{ { b }^{ 2 } } }{ { b }^{ 2 }-\frac { 1 }{ { a }^{ 2 } } } =9

b 2 a 2 1 b 2 a 2 b 2 1 a 2 = 9 \frac { \frac { { b }^{ 2 }{ a }^{ 2 }-1 }{ { b }^{ 2 } } }{ \frac { { a }^{ 2 }{ b }^{ 2 }-1 }{ { a }^{ 2 } } } =9

a 2 ( b 2 a 2 1 ) b 2 ( a 2 b 2 1 ) = 9 \frac { { a }^{ 2 }({ b }^{ 2 }{ a }^{ 2 }-1) }{ { b }^{ 2 }({ a }^{ 2 }{ b }^{ 2 }-1) } =9

a 2 b 2 = 9 \frac { { a }^{ 2 } }{ { b }^{ 2 } } =9

a 2 b 2 = 9 \sqrt { \frac { { a }^{ 2 } }{ { b }^{ 2 } } } =\sqrt { 9 }

a b = ± 3 \frac { { a } }{ { b } } =\pm 3

a b = ± 3 \left| \frac { { a } }{ { b } } \right| =\left| \pm 3 \right|

a b = 3 \left| \frac { { a } }{ { b } } \right| =3

3 \boxed{3}

Please mention in the question that a b 1 |ab|\ne1 . That would make it more clear.

Vignesh S - 5 years, 1 month ago

a 2 1 b 2 b 2 1 a 2 = a 2 ( 1 1 a 2 b 2 ) b 2 ( 1 1 a 2 b 2 ) = a 2 b 2 = 9 \dfrac{a^2-\dfrac 1 {b^2}}{b^2-\dfrac 1 {a^2}}=\dfrac{a^2 \left(1-\dfrac 1 {a^2b^2} \right)}{b^2 \left(1-\dfrac 1 {a^2b^2} \right)}=\dfrac{a^2}{b^2}=9 .

So, a b = 9 = 3 \left|\dfrac{a}{b}\right|=\sqrt{9}=3 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...