Sum of annoying fractions

Algebra Level 3

3 + 6 9 + 12 + 15 18 + 21 + 24 27 + + 48 + 51 54 = ? \dfrac{3+6}{9}+\dfrac{12+15}{18}+\dfrac{21+24}{27}+\cdots+\dfrac{48+51}{54}=\, ?

Express your answer as a decimal.


The answer is 9.55.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aaron Tsai
Apr 24, 2016

Simplifying all the fractions, we get 1 + 2 3 + 4 + 5 6 + 7 + 8 9 + . . . + 16 + 17 18 \frac{1+2}{3}+\frac{4+5}{6}+\frac{7+8}{9}+...+\frac{16+17}{18} .

Let b = 3 b=3 .

Then, the sum is 2 b 3 b + 4 b 3 2 b + 6 b 3 3 b + . . . + 12 b 3 6 b \frac{2b-3}{b}+\frac{4b-3}{2b}+\frac{6b-3}{3b}+...+\frac{12b-3}{6b}

Which simplifies to 2 3 b + 2 3 2 b + 2 3 3 b + . . . + 2 3 6 b 2-\frac{3}{b}+2-\frac{3}{2b}+2-\frac{3}{3b}+...+2-\frac{3}{6b}

and

12 ( 3 b + 3 2 b + 3 3 b + . . . + 3 6 b ) 12-(\frac{3}{b}+\frac{3}{2b}+\frac{3}{3b}+...+\frac{3}{6b})

We can factor out 3 b \frac{3}{b} to get 12 3 b ( 1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 ) 12-\frac{3}{b}(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6})

Substituting 3 3 back in the expression as b b , we get 12 ( 1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 ) = 12 2.45 = 9.55 12-(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6})=12-2.45=9.55 .

Or you could brute force it...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...