Again the same

Geometry Level 4

x 3 24 x 2 + 180 x 420 = 0 x^3-24x^2+180x-420=0

A A B C \triangle ABC has side lengths a a , b b and c c , which are also the roots of the equation above. Find a ( cos C + cos B ) + b ( cos C + cos A ) + c ( cos A + cos B ) a(\cos C+\cos B)+b(\cos C+\cos A)+c(\cos A+\cos B) . Give your answer to two decimal places.


Inspiration.


The answer is 24.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Jul 13, 2016

Group terms and write them as: ( a cos B + b cos A ) + ( a cos C + c cos A ) + ( b cos C + c cos B ) \small{(\color{#D61F06}{a\cos B+b\cos A})+(\color{#3D99F6}{a\cos C+c\cos A})+(\color{#20A900}{b\cos C+c\cos B})}

= c + b + a =\color{#D61F06}{c}+\color{#3D99F6}{b}+\color{#20A900}{a}

By Vieta's formula this is

= 24 \Large =\boxed{24}


Proof:- a cos B + b cos A = c a\cos B+b\cos A=c

Recall circumradius R R . Write a = 2 R sin A , b = 2 R sin B a=2R\sin A,b=2R\sin B and then use sin A cos B + cos A sin B = sin ( A + B ) = sin C \sin A\cos B+\cos A\sin B=\sin (A+B)=\sin C so that we are left with 2 R sin C 2R\sin C which is nothing but c c . In a similar way we can prove other two also so that :

( a cos B + b cos A ) = c ( a cos C + c cos A ) = b ( b cos C + c cos B ) = a (\color{#D61F06}{a\cos B+b\cos A})=c\\(\color{#3D99F6}{a\cos C+c\cos A})=b\\(\color{#20A900}{b\cos C+c\cos B})=a

Much popularly known as Projection formula .

Did a long way! Nice solution. +1)

Niranjan Khanderia - 4 years, 11 months ago

Log in to reply

Thanks... :-)

Rishabh Jain - 4 years, 11 months ago
Hung Woei Neoh
Jul 14, 2016

If you didn't know the projection formula (like me):

From Vieta's formula , we have:

a + b + c = 24 a b + a c + b c = 180 a b c = 420 \color{#3D99F6}{a+b+c=24}\\ \color{#D61F06}{ab+ac+bc=180}\\ \color{#EC7300}{abc=420}

From cosine rule , we also know that

a 2 = b 2 + c 2 2 b c cos A cos A = b 2 + c 2 a 2 2 b c a^2=b^2+c^2-2bc \cos A\\ \implies \cos A = \dfrac{b^2+c^2-a^2}{2bc}

Similarly, we can find that

cos B = a 2 + c 2 b 2 2 a c cos C = a 2 + b 2 c 2 2 a b \cos B = \dfrac{a^2+c^2-b^2}{2ac}\\ \cos C = \dfrac{a^2+b^2-c^2}{2ab}

Therefore,

a ( cos B + cos C ) + b ( cos C + cos A ) + c ( cos A + cos B ) = a ( a 2 + c 2 b 2 2 a c + a 2 + b 2 c 2 2 a b ) + b ( a 2 + b 2 c 2 2 a b + b 2 + c 2 a 2 2 b c ) + c ( b 2 + c 2 a 2 2 b c + a 2 + c 2 b 2 2 a c ) = a 2 + c 2 b 2 2 c + a 2 + b 2 c 2 2 b + a 2 + b 2 c 2 2 a + b 2 + c 2 a 2 2 c + b 2 + c 2 a 2 2 b + a 2 + c 2 b 2 2 a = 2 c 2 2 c + 2 b 2 2 b + 2 a 2 2 a = a + b + c = 24 a(\cos B+\cos C)+b(\cos C+\cos A)+c(\cos A+\cos B)\\ =\color{magenta}{\cancel{\color{#333333}{a}}}\left(\dfrac{a^2+c^2-b^2}{2\color{magenta}{\cancel{\color{#333333}{a}}}c}+ \dfrac{a^2+b^2-c^2}{2\color{magenta}{\cancel{\color{#333333}{a}}}b}\right)+\color{magenta}{\cancel{\color{#333333}{b}}}\left( \dfrac{a^2+b^2-c^2}{2a\color{magenta}{\cancel{\color{#333333}{b}}}}+ \dfrac{b^2+c^2-a^2}{2\color{magenta}{\cancel{\color{#333333}{b}}}c}\right)+\color{magenta}{\cancel{\color{#333333}{c}}}\left( \dfrac{b^2+c^2-a^2}{2b\color{magenta}{\cancel{\color{#333333}{c}}}}+\dfrac{a^2+c^2-b^2}{2a\color{magenta}{\cancel{\color{#333333}{c}}}}\right)\\ =\color{#20A900}{\dfrac{a^2+c^2-b^2}{2c}}+ \color{#69047E}{\dfrac{a^2+b^2-c^2}{2b}}+\color{#624F41}{\dfrac{a^2+b^2-c^2}{2a}}+ \color{#20A900}{\dfrac{b^2+c^2-a^2}{2c}}+\color{#69047E}{\dfrac{b^2+c^2-a^2}{2b}}+\color{#624F41}{\dfrac{a^2+c^2-b^2}{2a}}\\ =\color{#20A900}{\dfrac{2c^2}{2c}}+ \color{#69047E}{\dfrac{2b^2}{2b}}+\color{#624F41}{\dfrac{2a^2}{2a}}\\ =\color{#3D99F6}{a+b+c}\\ =\boxed{\color{#3D99F6}{24}}

That's why I provided a proof for that and its always good to learn new things..Anyways nice colorful solution as usual.... (+1)

Rishabh Jain - 4 years, 11 months ago

Log in to reply

Lol, I don't even know what a circumradius is. I'll learn about it when I find the time

Hung Woei Neoh - 4 years, 11 months ago

Nice colourful solution!(+1)...Its very easy for those who already knew that projection formula will be used.

A Former Brilliant Member - 4 years, 11 months ago

Completeness fulfilled! Upvoted!

Rishik Jain - 4 years, 10 months ago
Prakhar Bindal
Jul 14, 2016

This is called the projection rule. Its proof is very simple

Call the triangle to ABC And opposite sides be a,b,c .

drop a perpendicular from A Onto BC Call foot of perpendicular to be D.

Now BD+DC = BC (BC = ccos(B) And DC = bcos(C)

Hence bcosc+ccos(B) = a

So the expression asked is nothing but a+b+c which can be found out using vieta's

That's what I did... :-p (1+)

Rishabh Jain - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...