An algebra problem by A Former Brilliant Member

Algebra Level 5

( a 3 + b 3 + c 3 ) 2 ( a 4 + b 4 + c 4 ) ( a 5 + b 5 + c 5 ) 2 \dfrac{(a^3+b^3+c^3)^2 (a^4+b^4+c^4)}{(a^5+b^5+c^5)^2}

Given a , b a, b and c c satisfy a + b + c = 0 a + b + c = 0 and a 5 + b 5 + c 5 0 a^5 + b^5 + c^5 \neq 0 , the value of the above expression can be expressed as m n \dfrac mn , where m m and n n are coprime positive integers , calculate the value of m + n m+n .


The answer is 43.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 24, 2016

Using Newton's sums method and let P n = a n + b n + c n P_n = a^n + b^n + c^n , where n n is a positive integer, S 1 = a + b + c = 0 S_1 = a+b+c = 0 , S 2 = a b + b c + c a S_2 = ab+bc+ca , and S 3 = a b c S_3 = abc . Then, we have:

\(\begin{array} {} P_1 = S_1 & = 0 & = 0 \\ P_2 = S_1P_1 - 2S_2 & = 0 - 2 S_2 & = - 2S_2 \\ P_3 = S_1P_2 - S_2P_1 + 3S_3 & = 0 - 0 + 3S_3 & = 3S_3 \\ P_4 = S_1P_3 - S_2P_2 + S_3P_1 & = 0 - S_2(-2S_2) + 0 & = 2S_2^2 \\ P_5 = S_1P_4 - S_2P_3 + S_3P_2 & = 0 - S_2(3S_3) + S_3(-2S_2) & = -5S_2S_3 \end{array} \)

( a 3 + b 3 + c 3 ) 2 ( a 4 + b 4 + c 4 ) ( a 5 + b 5 + c 5 ) 2 = P 3 2 P 4 P 5 2 = ( 3 S 3 ) 2 ( 2 S 2 2 ) ( 5 S 2 S 3 ) 2 = 18 25 \implies \dfrac {(a^3 + b^3 + c^3)^2(a^4 + b^4 + c^4)}{(a^5 + b^5 + c^5)^2} = \dfrac {P_3^2P_4}{P_5^2} = \dfrac {(3S_3)^2(2S_2^2)}{(-5S_2S_3)^2} = \dfrac {18}{25}

m + n = 18 + 25 = 43 \implies m + n = 18+25 = \boxed{43}

Using Newton sum.

Firstly finding ( a 3 + b 3 + c 3 ) (a^3+b^3+c^3) .

a 3 + b 3 + c 3 = ( a + b + c ) ( a 2 + b 2 + c 2 ) ( a b b c c a ) ( a + b + c ) + 3 a b c a^3+b^3+c^3=(a+b+c)(a^2+b^2+c^2)-(ab-bc-ca)(a+b+c)+3abc
a 3 + b 3 + c 3 = 3 a b c a^3+b^3+c^3=3abc
( a 3 + b 3 + c 3 ) 2 = 9 ( a b c ) 2 \Rightarrow (a^3+b^3+c^3)^2=\boxed{9\color{#D61F06}{(abc)^2}}

Secondly finding ( a 4 + b 4 + c 4 ) (a^4+b^4+c^4) .

a 4 + b 4 + c 4 = ( a 2 + b 2 + c 2 ) 2 2 [ ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ] a^4+b^4+c^4=(a^2+b^2+c^2)^2-2[(ab)^2+(bc)^2+(ca)^2]
a 4 + b 4 + c 4 = [ ( a + b + c ) 2 2 ( a b + b c + c a ) ] 2 [ ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ] a^4+b^4+c^4=[(a+b+c)^2-2(ab+bc+ca)]-2[(ab)^2+(bc)^2+(ca)^2]
a 4 + b 4 + c 4 = 2 [ ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ] \Rightarrow a^4+b^4+c^4=\boxed{2\color{#20A900}{\left[(ab)^2+(bc)^2+(ca)^2\right]}}

Thirdly finding ( a 5 + b 5 + c 5 ) (a^5+b^5+c^5) .

a 5 + b 5 + c 5 = ( a + b + c ) ( a 4 + b 4 + c 4 ) ( a b + b c + c a ) ( a 3 + b 3 + c 3 ) + a b c ( a 2 + b 2 + c 2 ) a^5+b^5+c^5=(a+b+c)(a^4+b^4+c^4)-(ab+bc+ca)(a^3+b^3+c^3)+abc(a^2+b^2+c^2)
a 5 + b 5 + c 5 = ( a b + b c + c a ) ( 5 a b c ) a^5+b^5+c^5=(ab+bc+ca)(-5abc)
( a 5 + b 5 + c 5 ) 2 = ( a b + b c + c a ) 2 ( 5 a b c ) 2 = [ ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ] ( 5 a b c ) 2 \Rightarrow (a^5+b^5+c^5)^2=(ab+bc+ca)^2(-5abc)^2=\boxed{\color{#D61F06}{\left[(ab)^2+(bc)^2+(ca)^2\right]}(-5\color{#D61F06}{abc})^2}

( a 3 + b 3 + c 3 ) 2 ( a 4 + b 4 + c 4 ) ( a 5 + b 5 + c 5 ) 2 \implies \dfrac{(a^3+b^3+c^3)^2(a^4+b^4+c^4)}{(a^5+b^5+c^5)^2}

9 ( a b c ) 2 × 2 [ ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ] [ ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ] × 25 ( a b c ) 2 \Rightarrow \dfrac{9\color{#D61F06}{(abc)^2}×2\color{#20A900}{\left[(ab)^2+(bc)^2+(ca)^2\right]}}{\color{#20A900}{\left[(ab)^2+(bc)^2+(ca)^2\right]}×25\color{#D61F06}{(abc)^2}}

18 25 = m n \Rightarrow \dfrac{18}{25}=\dfrac{m}{n}

m + n = 18 + 25 = 43 \Rightarrow m+n=18+25=\boxed{43}

Or put a = 2 , b = 1 , c = 1 a=2,b=-1,c=-1 .. :-p....BTW (+1)

Rishabh Jain - 4 years, 11 months ago

Log in to reply

did the same

Akash Shukla - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...